Parvalbumin relaxes frog skeletal muscle when sarcoplasmic reticulum Ca(2+)-ATPase is inhibited

1996 ◽  
Vol 270 (2) ◽  
pp. C411-C417 ◽  
Author(s):  
Y. Jiang ◽  
J. D. Johnson ◽  
J. A. Rall

Inhibition of sarcoplasmic reticulum (SR) Ca(2+)-adenosinetriphosphatase (ATPase) with 2,5-di-(tert-butyl)-1,4-benzohydroquinone (TBQ) in frog skeletal muscle fibers at 10 degrees C prolonged the half time of the fall of the Ca2+ transient by 62% and twitch force by 100% and increased peak force by 120% without increasing the amplitude of the Ca2+ signal. In the presence of TBQ the rate of relaxation and the rate of fall of Ca2+ became progressively slower in a series of twitches until relaxation failed. Relaxation rate decreased with a time course (approximately 2 s-1) similar to the Mg2+ off rate from purified parvalbumin (PA; 3.6 s-1). TBQ slowed the rate of fall of Ca2+ (5-fold) and force (8-fold) in a 0.3-s tetanus so that the rate of fall of Ca2+ (approximately 2.5 s-1) was similar to the Mg2+ off rate from PA. TBQ caused a near total failure of both Ca2+ sequestration and relaxation in a 1.1-s tetanus, during which PA would be saturated with Ca2+ and could not contribute to relaxation. Thus, when the SR Ca(2+)-ATPase is inhibited, Mg(2+)-PA can sequester Ca2+ and produce relaxation at a rate that is defined by the Mg2+ off rate from PA.

Author(s):  
J. Sommer ◽  
P. Ingram ◽  
A. LeFurgey ◽  
R. Nassar ◽  
T. High

We are involved in a continuing series of experiments aimed at a complete description,in terms of morphology and quantitative topochemistry, of the time course of spatial distributions of physiologically important elements during excitation-contraction coupling (ECC) at different time intervals (fractions of msec) following electrical stimulation of single, intact frog skeletal muscle fibers. In this present study wg report such distributions for Ca after 1,2 and 3 min of electrical stimulation in the presence of 2x10-4 M ryanodine, an alkaloid that, in time, causes irreversible muscle contractures.Single, intact frog skeletal muscle fibers were quick-frozen, cryosectioned, freeze-substituted and in one case freeze-fractured. The freeze-dried cryosections were subjected to electron probe X-ray microanalysis (EPXMA) in a JEOL 1200EX analytical electron microscope equipped with a Tracor Northern X-ray detector and a fully quantitative imaging system. Both, 64/64 pixel images (ambient temp.), and small raster probes (cold stage,-115 °C) for better statistics, were obtained, each from the same section.


Author(s):  
J.R. Sommer ◽  
R. Nassar ◽  
S. Walker

Quick-freezing allows the structural analysis of timed perturbations of morphology. We are presenting preliminary results concerning the feasibility of studying directly the side bridge geometry of actin-myosin interactions within the time course of a twitch in single intact frog skeletal muscle fibers, both by freeze-substitution and freeze-fracture after quick-freezing, and following various time intervals between stimulation and impact of the fibers on a liquid He-cooled copper block.Materials and Methods. The quick-freezing device was a "Slammer"(Polaron) for which the electronics had been redesigned; they are capable, in combination with a Grass S48 stimulator, of any stimulation interval between 0 and 1 sec prior to freezing, including tetanus. The actual elapsed time between stimulation and freezing is recorded with a digital clock. Single intact tendonto- tendon frog skeletal muscle fibers (semitendinosus of r. temporaria) or toe muscle bundles (r.pipiens) were isolated by sharp dissection and placed between coextensive Pt stimulation wires on blackened 2% agarose, the height of which on the specimen holder was adjusted appropriately with respect to a spacer ring both, to calibrate the impact time and to prevent smashing of the fibers.


1978 ◽  
Vol 33 (7-8) ◽  
pp. 561-573 ◽  
Author(s):  
Joachim R. Sommer ◽  
Nancy R. Wallace ◽  
Wilhelm Hasselbach

Abstract When various cations, including Ca2+, are in the fixative, both sarcoplasmic reticulum (SR) of whole skeletal muscle and isolated SR vesicles collapse to form pentalaminate “compound membranes” that result from the apparent fusion of the lumenal lamellae of the membranous envelope of the SR. The process may be reversed by subsequently soaking the tissue in 1 ᴍ NaCl. An identical morphological phenomenon is observed in unfixed quickly frozen isolated frog skeletal muscle fibers, the cation in that case coming from endogenous sources. The hypothesis is advanced that the collapse is an in vivo process mediated by the sequestration of Ca2+ after contraction. The resulting obliteration of the SR lumen would have the effect of displacing the SR contents into the junctional SR, as well as electrically isolating the free SR from the junctional SR during relaxation. As a consequence, resistive coupling between the plasmalemma and the junctional SR becomes a plausible mechanism for the translation of the action potential into Ca2+ release, since the bulk of the SR membrane capacitance would now remain separated from the plasmalemma during relaxation.


Author(s):  
Joachim R. Sommer ◽  
Nancy R. Wallace

After Howell (1) had shown that ruthenium red treatment of fixed frog skeletal muscle caused collapse of the intermediate cisternae of the sarcoplasmic reticulum (SR), forming a pentalaminate structure by obi iterating the SR lumen, we demonstrated that the phenomenon involves the entire SR including the nuclear envelope and that it also occurs after treatment with other cations, including calcium (2,3,4).From these observations we have formulated a hypothesis which states that intracellular calcium taken up by the SR at the end of contraction causes the M rete to collapse at a certain threshold concentration as the first step in a subsequent centrifugal zippering of the free SR toward the junctional SR (JSR). This would cause a) bulk transport of SR contents, such as calcium and granular material (4) into the JSR and, b) electrical isolation of the free SR from the JSR.


Author(s):  
A. V. Somlyo ◽  
H. Shuman ◽  
A. P. Somlyo

Electron probe analysis of frozen dried cryosections of frog skeletal muscle, rabbit vascular smooth muscle and of isolated, hyperpermeab1 e rabbit cardiac myocytes has been used to determine the composition of the cytoplasm and organelles in the resting state as well as during contraction. The concentration of elements within the organelles reflects the permeabilities of the organelle membranes to the cytoplasmic ions as well as binding sites. The measurements of [Ca] in the sarcoplasmic reticulum (SR) and mitochondria at rest and during contraction, have direct bearing on their role as release and/or storage sites for Ca in situ.


Toxicon ◽  
1987 ◽  
Vol 25 (2) ◽  
pp. 159-165 ◽  
Author(s):  
S.L. Hu ◽  
C.Y. Kao ◽  
F.E. Koehn ◽  
H.K. Schnoes

Sign in / Sign up

Export Citation Format

Share Document