skeletal muscle fibers
Recently Published Documents


TOTAL DOCUMENTS

1130
(FIVE YEARS 69)

H-INDEX

72
(FIVE YEARS 6)

2021 ◽  
Vol 154 (9) ◽  
Author(s):  
Romane Idoux ◽  
Christine Berthier ◽  
Vincent Jacquemond ◽  
Bruno Allard

The zebrafish has emerged as a very relevant animal model to decipher the pathophysiology of human muscle disorders. However, the vast majority of studies on zebrafish skeletal muscle have investigated genetic, histological, and molecular aspects, but functional approaches at the cellular level, especially in the field of excitation–contraction (EC) coupling, are scarcer and generally limited to cultured myotubes or fibers from embryonic zebrafish. Considering that zebrafish undergoes profound metamorphosis during transition from larval to adult stage and that number of muscle pathologies come up at ages far beyond embryonic stages, there is an actual need to investigate EC coupling in fully differentiated zebrafish skeletal muscle. In the present study, we were able to implement current and voltage clamp combined with intracellular Ca2+ measurements using the intracellularly loaded Ca2+ dye indo-1 in enzymatically isolated fast skeletal muscle fibers from 1-yr old zebrafish. Recording of action potentials (AP) in current-clamp conditions revealed very fast kinetics of the repolarization phase of AP. Measurements of intramembrane charge movements in voltage-clamp conditions showed that charge movement density was half that measured in mammalian fibers, but they displayed much faster kinetics. Ca2+ transients elicited by depolarization displayed a voltage-dependent phase of activation and voltage- and time-dependent phase of inactivation. Recording of Ca2+ signals elicited by trains of AP at different rates in current-clamp conditions indicated that Ca2+ signals fused at very high stimulation frequencies with no sign of Ca2+ signal decay for the entire 0.5 s duration of the stimulation, giving evidence that fibers were still able to generate AP and the sarcoplasmic reticulum to release Ca2+ with stimulation rates as high as 200 Hz. These data indicate that adult zebrafish fast skeletal muscle fibers exhibit strikingly fast kinetics of EC coupling from AP firing to charge movements and sarcoplasmic reticulum Ca2+ release.


2021 ◽  
Vol 154 (1) ◽  
Author(s):  
Catherine E. Morris ◽  
Joshua J. Wheeler ◽  
Béla Joos

Duchenne muscular dystrophy (DMD) is an X-linked dystrophin-minus muscle-wasting disease. Ion homeostasis in skeletal muscle fibers underperforms as DMD progresses. But though DMD renders these excitable cells intolerant of exertion, sodium overloaded, depolarized, and spontaneously contractile, they can survive for several decades. We show computationally that underpinning this longevity is a strikingly frugal, robust Pump-Leak/Donnan (P-L/D) ion homeostatic process. Unlike neurons, which operate with a costly “Pump-Leak–dominated” ion homeostatic steady state, skeletal muscle fibers operate with a low-cost “Donnan-dominated” ion homeostatic steady state that combines a large chloride permeability with an exceptionally small sodium permeability. Simultaneously, this combination keeps fiber excitability low and minimizes pump expenditures. As mechanically active, long-lived multinucleate cells, skeletal muscle fibers have evolved to handle overexertion, sarcolemmal tears, ischemic bouts, etc.; the frugality of their Donnan dominated steady state lets them maintain the outsized pump reserves that make them resilient during these inevitable transient emergencies. Here, P-L/D model variants challenged with DMD-type insult/injury (low pump-strength, overstimulation, leaky Nav and cation channels) show how chronic “nonosmotic” sodium overload (observed in DMD patients) develops. Profoundly severe DMD ion homeostatic insult/injury causes spontaneous firing (and, consequently, unwanted excitation–contraction coupling) that elicits cytotoxic swelling. Therefore, boosting operational pump-strength and/or diminishing sodium and cation channel leaks should help extend DMD fiber longevity.


2021 ◽  
Vol 118 (40) ◽  
pp. e2026116118
Author(s):  
Quinton Banks ◽  
Hugo Bibollet ◽  
Minerva Contreras ◽  
Daniel F. Bennett ◽  
Roger A. Bannister ◽  
...  

The skeletal muscle L-type Ca2+ channel (CaV1.1) works primarily as a voltage sensor for skeletal muscle action potential (AP)-evoked Ca2+ release. CaV1.1 contains four distinct voltage-sensing domains (VSDs), yet the contribution of each VSD to AP-evoked Ca2+ release remains unknown. To investigate the role of VSDs in excitation–contraction coupling (ECC), we encoded cysteine substitutions on each S4 voltage-sensing segment of CaV1.1, expressed each construct via in vivo gene transfer electroporation, and used in cellulo AP fluorometry to track the movement of each CaV1.1 VSD in skeletal muscle fibers. We first provide electrical measurements of CaV1.1 voltage sensor charge movement in response to an AP waveform. Then we characterize the fluorescently labeled channels’ VSD fluorescence signal responses to an AP and compare them with the waveforms of the electrically measured charge movement, the optically measured free myoplasmic Ca2+, and the calculated rate of Ca2+ release from the sarcoplasmic reticulum for an AP, the physiological signal for skeletal muscle fiber activation. A considerable fraction of the fluorescence signal for each VSD occurred after the time of peak Ca2+ release, and even more occurred after the earlier peak of electrically measured charge movement during an AP, and thus could not directly reflect activation of Ca2+ release or charge movement, respectively. However, a sizable fraction of the fluorometric signals for VSDs I, II, and IV, but not VSDIII, overlap the rising phase of charge moved, and even more for Ca2+ release, and thus could be involved in voltage sensor rearrangements or Ca2+ release activation.


2021 ◽  
Author(s):  
Malek Kammoun ◽  
Philippe Pouletaut ◽  
Sandrine Morandat ◽  
Malayannan Subramaniam ◽  
John R. Hawse ◽  
...  

2021 ◽  
Vol 53 (8S) ◽  
pp. 110-111
Author(s):  
Austin W. Ricci ◽  
Scott J. Mongold ◽  
Grace E. Privett ◽  
Karen W. Needham ◽  
Damien M. Callahan

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hasan A. Asfour ◽  
Emad I. Shaqoura ◽  
Raed S. Said ◽  
Ayman G. Mustafa ◽  
Bright Starling Emerald ◽  
...  

AbstractOxidative and glycolytic muscle fibers differ in their ultrastructure, metabolism, and responses to physiological stimuli and pathological insults. We examined whether these fibers respond differentially to exogenous anabolic androgenic steroids (AASs) by comparing morphological and histological changes between the oxidative anterior latissimus dorsi (ALD) and glycolytic pectoralis major (PM) fibers in adult avian muscles. Adult female White Leghorn chickens (Gallus gallus) were randomly divided into five groups: a vehicle control and four mesterolone treatment groups (4, 8, 12, and 16 mg/kg). Mesterolone was administered orally every three days for four weeks. Immunocytochemical techniques and morphometric analyses were employed to measure the changes in muscle weight, fiber size, satellite cell (SC) composition, and number of myonuclei. Mesterolone increased both body and muscle weights and induced hypertrophy in glycolytic PM fibers but not in oxidative ALD fibers. Mesterolone induced SC proliferation in both muscles; however, the myonuclear accretion was noticeable only in the PM muscle. In both muscles, the collective changes maintained a constant myonuclear domain size and the changes were dose independent. In conclusion, mesterolone induced distinct dose-independent effects in avian oxidative and glycolytic skeletal muscle fibers; these findings might be clinically valuable in the treatment of age-related sarcopenia.


Diabetes ◽  
2021 ◽  
Vol 70 (Supplement 1) ◽  
pp. 1189-P
Author(s):  
KAYLEIGH VOOS ◽  
JOYCE TZENG ◽  
DAMARIS LORENZO

Sign in / Sign up

Export Citation Format

Share Document