Potentiation of the early-phase insulin response by a prior meal contributes to the second-meal phenomenon in type 2 diabetes

2011 ◽  
Vol 301 (5) ◽  
pp. E984-E990 ◽  
Author(s):  
Seung-Hwan Lee ◽  
Andrea Tura ◽  
Andrea Mari ◽  
Seung-Hyun Ko ◽  
Hyuk-Sang Kwon ◽  
...  

Improved glucose tolerance following a sequential meal is known as the second-meal phenomenon. We aimed to investigate its extent and underlying mechanisms in patients with type 2 diabetes. Metabolic responses after lunch in 12 diabetic patients were compared on two separate days: one with (Day BL) and another without (Day FL) breakfast. The responses of hormones were calculated by the incremental area under the curve (iAUC) values for 180 min after each meal. Indexes of early-phase insulin secretion were assessed, and β-cell function was estimated by mathematical modeling. [iAUCglucose(180–360 min)] was significantly lower on Day BL than on Day FL (181 ± 43 vs. 472 ± 29 mmol·liter−1·min, P = 0.0005). The magnitude of the The second-meal phenomenon [iAUCglucose(180–360 min) on Day BL/Day FL] was 35 ± 9%. The peak levels of insulin and C-peptide were attained 45 min earlier after the second meal than after the first meal. iAUCglucose(180–360 min) correlated negatively with iAUCinsulin(180–210 min) ( r = −0.443, P = 0.0300), insulinogenic index ( r = −0.769, P < 0.0001), acute C-peptide response ( r = −0.596, P = 0.0021), and potentiation factor [i.e., potentiation effect on insulin secretion] ratio (180–360)/(0–20) ( r = −0.559, P = 0.0045), while correlated positively with free fatty acid level before lunch ( r = 0.679, P = 0.0003). The second-meal phenomenon was evident in patients with type 2 diabetes. Potentiation of the early-phase insulin response by a prior meal contributes to this phenomenon in type 2 diabetes.

2020 ◽  
Vol 48 (7) ◽  
pp. 030006052093786
Author(s):  
Li-hui Yan ◽  
Biao Mu ◽  
Da Pan ◽  
Ya-nan Shi ◽  
Ji-hong Yuan ◽  
...  

Aims Previous studies suggest that small intestinal bacterial overgrowth (SIBO) is associated with type 2 diabetes. However, few studies have evaluated the association between SIBO and beta-cell function in type 2 diabetes. The aim of this study was to evaluate whether beta-cell function was associated with SIBO. Materials and methods One hundred four patients with type 2 diabetes were included in this study. Based on the presence of SIBO, the patients were divided into SIBO-positive and SIBO-negative groups. Oral glucose tolerance tests were performed. Insulin sensitivity was measured using 1/homeostasis model assessment of insulin resistance (1/HOMA-IR) and the insulin sensitivity index (ISIM). Insulin release was calculated by HOMA-β, early-phase insulin secretion index InsAUC30/GluAUC30, and total-phase insulin secretion index InsAUC120/GluAUC120. Results Compared with the SIBO-negative group, patients in the SIBO-positive group showed a higher glucose level at 120 minutes, HbA1c, 1/HOMA-IR, and ISIM and a lower HOMA-β level, early-phase InsAUC30/GluAUC30, and total-phase InsAUC120/GluAUC120. Multiple linear regression analysis showed that body mass index, glucose at 0 minutes, and SIBO were independently associated with the early-phase and total-phase insulin secretion. Conclusion SIBO may be involved in lower levels of insulin release and worse glycemic control.


2006 ◽  
Vol 155 (4) ◽  
pp. 615-622 ◽  
Author(s):  
Wan Sub Shim ◽  
Soo Kyung Kim ◽  
Hae Jin Kim ◽  
Eun Seok Kang ◽  
Chul Woo Ahn ◽  
...  

Objective: Type-2 diabetes is a progressive disease. However, little is known about whether decreased fasting or postprandial pancreatic β-cell responsiveness is more prominent with increased duration of diabetes. The aim of this study was to evaluate the relationship between insulin secretion both during fasting and 2 h postprandial, and the duration of diabetes in type-2 diabetic patients. Design: Cross-sectional clinical investigation. Methods: We conducted a meal tolerance test in 1466 type-2 diabetic patients and calculated fasting (M0) and postprandial (M1) β-cell responsiveness. Results: The fasting C-peptide, postprandial C-peptide, M0, and M1 values were lower, but HbA1c values were higher, in patients with diabetes duration > 10 years than those in other groups. There was no difference in the HbA1c levels according to the tertiles of their fasting C-peptide level. However, in a group of patients with highest postprandial C-peptide tertile, the HbA1c values were significantly lower than those in other groups. After adjustment of age, sex, and body mass index (BMI), the duration of diabetes was found to be negatively correlated with fasting C-peptide (γ = −0.102), postprandial C-peptide (γ = −0.356), M0 (γ = −0.263), and M1 (γ = −0.315; P < 0.01 respectively). After adjustment of age, sex, and BMI, HbA1c was found to be negatively correlated with postprandial C-peptide (γ = −0.264), M0 (γ = −0.379), and M1 (γ = −0.522), however, positively correlated with fasting C-peptide (γ = 0.105; P < 0.01 respectively). In stepwise multiple regression analysis, M0, M1, and homeostasis model assessment for insulin resistance (HOMA-IR) emerged as predictors of HbAlc after adjustment for age, sex, and BMI (R2 = 0.272, 0.080, and 0.056 respectively). Conclusions: With increasing duration of diabetes, the decrease of postprandial insulin secretion is becoming more prominent, and postprandial β-cell responsiveness may be a more important determinant for glycemic control than fasting β-cell responsiveness.


Nutrients ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 486 ◽  
Author(s):  
Hana Kahleova ◽  
Andrea Tura ◽  
Marta Klementova ◽  
Lenka Thieme ◽  
Martin Haluzik ◽  
...  

Diminished postprandial secretion of incretins and insulin represents one of the key pathophysiological mechanisms behind type 2 diabetes (T2D). We tested the effects of two energy- and macronutrient-matched meals: A standard meat (M-meal) and a vegan (V-meal) on postprandial incretin and insulin secretion in participants with T2D. A randomized crossover design was used in 20 participants with T2D. Plasma concentrations of glucose, insulin, C-peptide, glucagon-like peptide-1 (GLP-1), amylin, and gastric inhibitory peptide (GIP) were determined at 0, 30, 60, 120, and 180 min. Beta-cell function was assessed with a mathematical model, using C-peptide deconvolution. Repeated-measures ANOVA was used for statistical analysis. Postprandial plasma glucose responses were similar after both test meals (p = 0.64). An increase in the stimulated secretion of insulin (by 30.5%; 95% CI 21.2 to 40.7%; p < 0.001), C-peptide (by 7.1%; 95% CI 4.1 to 9.9%; p < 0.001), and amylin (by 15.7%; 95% CI 11.8 to 19.7%; p < 0.001) was observed following consumption of the V-meal. An increase in stimulated secretion of GLP-1 (by 19.2%; 95% CI 12.4 to 26.7%; p < 0.001) and a decrease in GIP (by −9.4%; 95% CI −17.3 to −0.7%; p = 0.02) were observed after the V-meal. Several parameters of beta-cell function increased after the V-meal, particularly insulin secretion at a fixed glucose value 5 mmol/L, rate sensitivity, and the potentiation factor. Our results showed an increase in postprandial incretin and insulin secretion, after consumption of a V-meal, suggesting a therapeutic potential of plant-based meals for improving beta-cell function in T2D.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Jie Cao ◽  
Hong Wang ◽  
Jian-bin Su ◽  
Xue-qin Wang ◽  
Dong-mei Zhang ◽  
...  

Abstract Objective Type 2 diabetes (T2D) is a chronic low-grade inflammatory disease, which characterized by islet beta cell dysfunction. Serum adenosine deaminase (ADA) is an important enzyme that regulates the biological activity of insulin, and its levels are greatly increased in inflammatory diseases with insulin resistance. The present study was designed to explore the relationship between serum ADA levels and islet beta cell function in patients with T2D. Methods This cross-sectional study recruited 1573 patients with T2D from the Endocrinology Department of the Affiliated Hospital 2 of Nantong University between 2015 and 2018. All participants were received serum ADA test and oral glucose tolerance test (OGTT). Insulin sensitivity index (assessed by Matsuda index using C-peptide, ISIM-cp), insulin secretion index (assessed by ratio of area under the C-peptide curve to glucose curve, AUCcp/glu) and islet beta cell function (assessed by insulin secretion-sensitivity index 2 using C-peptide, ISSI2cp) were derived from OGTT. And other clinical parameters, such as HbA1c, were also collected. Results It was showed that HbA1c was significantly increased, while ISIM-cp, AUCcp/glu and ISSI2cp significantly decreased, across ascending quartiles of serum ADA levels. Moreover, serum ADA levels were negatively correlated with ISSI2cp (r = − 0.267, p < 0.001). Furthermore, after adjusting for other clinical parameters by multiple linear regression analysis, serum ADA levels were still independently associated with ISSI2cp (β =  − 0.125, t =  − 5.397, p < 0.001, adjusted R2 = 0.459). Conclusions Serum ADA levels are independently associated with islet beta cell function in patients with T2D.


Back ground: Type 2 diabetes is mostly due to impaired β-cell mass and dysfunction which expressed by Insulin secretion, sensitivity and resistance. Aim of study: to evaluate β- cell function in newly diagnosed and ongoing diabetics. Method: Eighty-eight subjects enrolled in this study with age range (30-59) years, (20) healthy individuals as controls group with mean age (42.95±9.80) years. (68) Diabetic Patients was divided into two groups, (26) newly diagnosed diabetic, mean age (45.81±8.16) years and (42) ongoing diabetics, mean age (49.33±6.64) year. "Fasting glucose", "lipid profile", "glycosylated hemoglobin", "C-peptide levels" were evaluated. Insulin secretion, sensitivity and resistance "HOMA B %", "HOMA S %"and "HOMA IR" respectively were estimated by "Homeostasis Model Assessment" "HOMA2 calculator program". Results: "Insulin secretion" and "sensitivity" were found to be lower (P 0.001) in both groups of diabetes than that controls, while a high level of insulin resistance in both diabetic groups than controls (P>0.0001)."C-peptide" level is higher in "newly diagnosed" diabetics than" ongoing diabetics" and controls (p˂0.0001). Conclusion: Patients with low c- peptide level has poor insulin reserve and may need insulin while patients with high level of c- peptide have good insulin reserve and not need insulin to control his blood glucose.


2018 ◽  
Vol 46 (1) ◽  
pp. 335-350 ◽  
Author(s):  
Yuting Ruan ◽  
Nie Lin ◽  
Qiang Ma ◽  
Rongping Chen ◽  
Zhen Zhang ◽  
...  

Background/Aims: The islet is an important endocrine organ to secrete insulin to regulate the metabolism of glucose and maintain the stability of blood glucose. Long noncoding RNAs (lncRNAs) are involved in a variety of biological functions and play key roles in many diseases, including type 2 diabetes (T2D). The aim of this study was to determine whether lncRNA-p3134 is associated with glucose metabolism and insulin signaling in pancreatic β cells. Methods: LncRNA microarray technology was used to identify the differentially expressed circulating lncRNAs in T2D patients. RT-PCR analyses were performed to determine the expression of lncRNA-p3134 in 30 pairs of diabetic and non-diabetic patients. The correlation of lncRNA-p3134 to clinical data from T2D patients was analyzed. LncRNA-p3134 was overexpressed in Min6 cells and db/db mice by adenovirus-mediated technology. CCK-8, TUNEL, Western blot, glucose-stimulated insulin secretion (GSIS), ELISAs and immunochemistry were performed to determine the effect of lncRNA-p3134 on proliferation, apoptosis and insulin secretion both in vitro and vivo. Results: The circulating level of lncRNA-p3134 was higher in diabetic patients than in non-diabetic controls and was correlated with fasting blood glucose and HOMA-β levels. The lncRNA-p3134 had risen by 4 times in serum exosomes but nearly unchanged in exosome-free samples. The secretion of lncRNA-p3134 was dynamically modulated by glucose in both Min6 cells and isolated mouse islet cells. LncRNA-p3134 positively regulate GSIS through promoting of key regulators (Pdx-1, MafA, GLUT2 and Tcf7l2) in β cells. In addition, the overexpression of lncRNA-p3134 resulted in a decreased apoptosis ratio and partially reversed the glucotoxicity effects on GSIS function in Min6 cells. The restoration of insulin synthesis and secretion the increase of the insulin positive cells areas by upregulation of lncRNA-p3134 in db/db mice confirmed the compensatory role of lncRNA-p3134 to preserve β-cell function. Furthermore, a protective effect of lncRNA-p3134 on GSIS by positive modulation of PI3K/Akt/mTOR signaling was also confirmed. After blocking the PI3K/AKT signals with their specific inhibitor, the effect of overexpressed lncRNA-p3134 on insulin secretion was obviously attenuated. Conclusion: Taken together, the results of this study provide new insights into lncRNA-p3134 regulation in pancreatic β cells and provide a better understanding of novel mechanism of glucose homeostasis.


Diabetes Care ◽  
2022 ◽  
Author(s):  
Marta Garaulet ◽  
Jesus Lopez-Minguez ◽  
Hassan S. Dashti ◽  
Céline Vetter ◽  
Antonio Miguel Hernández-Martínez ◽  
...  

OBJECTIVE We tested whether the concurrence of food intake and elevated concentration of endogenous melatonin, as occurs in late eating, results in impaired glucose control, in particular in carriers of the type 2 diabetes–associated G allele in the melatonin receptor-1b gene (MTNR1B). RESEARCH DESIGN AND METHODS In a Spanish natural late-eating population, a randomized, crossover study was performed. Each participant (n = 845) underwent two evening 2-h 75-g oral glucose tolerance tests following an 8-h fast: an early condition scheduled 4 h prior to habitual bedtime (“early dinner timing”) and a late condition scheduled 1 h prior to habitual bedtime (“late dinner timing”), simulating an early and a late dinner timing, respectively. Differences in postprandial glucose and insulin responsesbetween early and late dinner timing were determined using incremental area under the curve (AUC) calculated by the trapezoidal method. RESULTS Melatonin serum levels were 3.5-fold higher in the late versus early condition, with late dinner timing resulting in 6.7% lower insulin AUC and 8.3% higher glucose AUC. In the late condition, MTNR1B G-allele carriers had lower glucose tolerance than noncarriers. Genotype differences in glucose tolerance were attributed to reductions in β-cell function (P for interaction, Pint glucose area under the curve = 0.009, Pint corrected insulin response = 0.022, and Pint Disposition Index = 0.018). CONCLUSIONS Concurrently high endogenous melatonin and carbohydrate intake, as typical for late eating, impairs glucose tolerance, especially in MTNR1B G-risk allele carriers, attributable to insulin secretion defects.


2007 ◽  
Vol 292 (6) ◽  
pp. E1775-E1781 ◽  
Author(s):  
Kenneth Cusi ◽  
Sangeeta Kashyap ◽  
Amalia Gastaldelli ◽  
Mandeep Bajaj ◽  
Eugenio Cersosimo

Elevated plasma FFA cause β-cell lipotoxicity and impair insulin secretion in nondiabetic subjects predisposed to type 2 diabetes mellitus [T2DM; i.e., with a strong family history of T2DM (FH+)] but not in nondiabetic subjects without a family history of T2DM. To determine whether lowering plasma FFA with acipimox, an antilipolytic nicotinic acid derivative, may enhance insulin secretion, nine FH+ volunteers were admitted twice and received in random order either acipimox or placebo (double-blind) for 48 h. Plasma glucose/insulin/C-peptide concentrations were measured from 0800 to 2400. On day 3, insulin secretion rates (ISRs) were assessed during a +125 mg/dl hyperglycemic clamp. Acipimox reduced 48-h plasma FFA by 36% ( P < 0.001) and increased the plasma C-peptide relative to the plasma glucose concentration or ΔC-peptide/Δglucose AUC (+177%, P = 0.02), an index of improved β-cell function. Acipimox improved insulin sensitivity (M/I) 26.1 ± 5% ( P < 0.04). First- (+19 ± 6%, P = 0.1) and second-phase (+31 ± 6%, P = 0.05) ISRs during the hyperglycemic clamp also improved. This was particularly evident when examined relative to the prevailing insulin resistance [1/(M/I)], as both first- and second-phase ISR markedly increased by 29 ± 7 ( P < 0.05) and 41 ± 8% ( P = 0.02). There was an inverse correlation between fasting FFA and first-phase ISR ( r2 = 0.31, P < 0.02) and acute (2–4 min) glucose-induced insulin release after acipimox ( r2 =0.52, P < 0.04). In this proof-of-concept study in FH+ individuals predisposed to T2DM, a 48-h reduction of plasma FFA improves day-long meal and glucose-stimulated insulin secretion. These results provide additional evidence for the important role that plasma FFA play regarding insulin secretion in FH+ subjects predisposed to T2DM.


Author(s):  
Hayat Aljaibeji ◽  
Noha Mousaad Elemam ◽  
Abdul Khader Mohammed ◽  
Hind Hasswan ◽  
Mahammad Al Thahyabat ◽  
...  

Abstract Let7b-5p is a member of the Let-7 miRNA family and one of the top expressed miRNAs in human islets that implicated in glucose homeostasis. The levels of Let7b-5p in type 2 diabetes (T2DM) patients or its role in β-cell function is still unclear. In the current study, we measured the serum levels of let7b-5p in Emirati patients with T2DM (with/without complications) and control subjects. Overexpression or silencing of let7b-5p in INS-1 (832/13) cells was performed to investigate the impact on insulin secretion, content, cell viability, apoptosis, and key functional genes. We found that serum levels of let7b-5p are significantly (p<0.05) higher in T2DM-patients or T2DM with complications compared to control subjects. Overexpression of let7b-5p increased insulin content and decreased glucose-stimulated insulin secretion, whereas silencing of let7b-5p reduced insulin content and secretion. Modulation of the expression levels of let7b-5p did not influence cell viability nor apoptosis. Analysis of mRNA and protein expression of hallmark genes in let7b-5p transfected cells revealed a marked dysregulation of Insulin, Pancreatic And Duodenal Homeobox 1 (PDX1), glucokinase (GCK), glucose transporter 2 (GLUT2), and INSR. In conclusion, an appropriate level of let7b-5p is essential to maintain β-cell function and may be regarded as a biomarker for T2DM.


Sign in / Sign up

Export Citation Format

Share Document