Effect of needle biopsy from the vastus lateralis muscle on insulin-stimulated glucose metabolism in humans
To examine the cellular mechanisms behind conditions characterized by insulin resistance, the clamp technique is often combined with muscle biopsies. To test whether the trauma of a needle biopsy from the vastus lateralis muscle per se may influence insulin-stimulated glucose uptake, eight healthy subjects underwent two randomly sequenced hyperinsulinemic (insulin infusion rate: 0.6 mU.kg-1.min-1 for 150 min) euglycemic clamps with an interval of 4-6 wk. In one study (study B) a muscle biopsy (approximately 250 mg, i.e., larger than normal standard) was taken in the basal state just before the clamp procedure, whereas the other was a control study (study C). Insulin-stimulated glucose uptake was significantly reduced in study B (5.36 +/- 0.96 mg.kg-1.min-1) compared with study C (6.06 +/- 0.68 mg.kg-1.min-1; P < 0.05). Nonoxidative glucose disposal (indirect calorimetry) was decreased (2.81 +/- 1.08 vs. 3.64 +/- 1.34 mg.kg-1.min-1; P < 0.05), whereas glucose oxidation was unaltered. Likewise, endogenous glucose output ([3-3H]glucose) was identically suppressed during hyperinsulinemia. Circulating levels of epinephrine, glucagon, and growth hormone did not differ significantly in studies B and C. In contrast, plasma norepinephrine, serum cortisol, and free fatty acid rose after biopsy (P < 0.05). In conclusion, performance of a muscle biopsy may diminish insulin sensitivity by affecting nonoxidative glucose metabolism. This should be considered when assessing whole body insulin sensitivity after a percutaneous needle muscle biopsy.