scholarly journals Fed-state clamp stimulates cellular mechanisms of muscle protein anabolism and modulates glucose disposal in normal men

2009 ◽  
Vol 296 (1) ◽  
pp. E105-E113 ◽  
Author(s):  
Olasunkanmi A. J. Adegoke ◽  
Stéphanie Chevalier ◽  
José A. Morais ◽  
Réjeanne Gougeon ◽  
Scot R. Kimball ◽  
...  

Since maximum anabolism occurs postprandially, we developed a simulated fed state with clamped hyperinsulinemia, physiological hyperglycemia, and hyperaminoacidemia (Hyper-3) and explored muscle cellular mechanisms. Whole body [1-13C]leucine and [3-3H]glucose kinetics in healthy men were compared between hyperinsulinemic, euglycemic, isoaminoacidemic (Hyper-1, n = 10) and Hyper-3 ( n = 9) clamps. In Hyper-3 vs. Hyper-1, nonoxidative leucine Rd [rate of disappearance (synthesis)] was stimulated more (45 ± 4 vs. 24 ± 4 μmol/min, P < 0.01) and endogenous Ra [rate of appearance (breakdown)] was inhibited similarly; hence net balance increased more (86 ± 6 vs. 49 ± 2 μmol/min, P < 0.001). Glucose Rd was similar; thus Hyper-3 metabolic clearance rate (331 ± 23 vs. 557 ± 41 ml/min, P < 0.0005) and Rd/insulin (M, 0.65 ± 0.10 vs. 1.25 ± 0.10 mg·min−1·pmol−1·l, P < 0.001) were less, despite higher insulin (798 ± 74 vs. 450 ± 24 pmol/l, P < 0.005). In vastus lateralis muscle biopsies, phosphorylation of Akt ( P = 0.025), mammalian target of rapamycin (mTOR), ribosomal protein S6 kinase (p70S6K1; P = 0.008), S6 ( P = 0.049), and 4E-binding protein 1 (4E-BP1; P = 0.001) increased. With decreased eukaryotic initiation factor-4E (eIF4E)·4E-BP1 complex ( P = 0.01), these are consistent with increased mTOR complex 1 (mTORC1) signaling and translation initiation of protein synthesis. Although mRNA expression of ubiquitin, MAFbx 1, and MuRF-1 was unchanged, total ubiquitinated proteins decreased 20% ( P < 0.01), consistent with proteolysis suppression. The Hyper-3 clamp increases whole body protein synthesis, net anabolism, and muscle protein translation initiation pathways and decreases protein ubiquitination. The main contribution of hyperaminoacidemia is stimulation of synthesis rather than inhibition of proteolysis, and it attenuates the expected increment of glucose disposal.

2008 ◽  
Vol 32 (4) ◽  
pp. 341
Author(s):  
Stéphanie Chevalier ◽  
Olasunkanmi A.J. Adegoke ◽  
Linda Wykes ◽  
José A. Morais ◽  
Réjeanne Gougeon ◽  
...  

2008 ◽  
Vol 295 (1) ◽  
pp. E70-E77 ◽  
Author(s):  
Milou Beelen ◽  
René Koopman ◽  
Annemie P. Gijsen ◽  
Hanne Vandereyt ◽  
Arie K. Kies ◽  
...  

In contrast to the effect of nutritional intervention on postexercise muscle protein synthesis, little is known about the potential to modulate protein synthesis during exercise. This study investigates the effect of protein coingestion with carbohydrate on muscle protein synthesis during resistance-type exercise. Ten healthy males were studied in the evening after they consumed a standardized diet throughout the day. Subjects participated in two experiments in which they ingested either carbohydrate or carbohydrate with protein during a 2-h resistance exercise session. Subjects received a bolus of test drink before and every 15 min during exercise, providing 0.15 g·kg−1·h−1 carbohydrate with (CHO + PRO) or without (CHO) 0.15 g·kg−1·h−1 protein hydrolysate. Continuous intravenous infusions with l-[ ring-13C6]phenylalanine and l-[ ring-2H2]tyrosine were applied, and blood and muscle biopsies were collected to assess whole body and muscle protein synthesis rates during exercise. Protein coingestion lowered whole body protein breakdown rates by 8.4 ± 3.6% ( P = 0.066), compared with the ingestion of carbohydrate only, and augmented protein oxidation and synthesis rates by 77 ± 17 and 33 ± 3%, respectively ( P < 0.01). As a consequence, whole body net protein balance was negative in CHO, whereas a positive net balance was achieved after the CHO + PRO treatment (−4.4 ± 0.3 vs. 16.3 ± 0.4 μmol phenylalanine·kg−1·h−1, respectively; P < 0.01). In accordance, mixed muscle protein fractional synthetic rate was 49 ± 22% higher after protein coingestion (0.088 ± 0.012 and 0.060 ± 0.004%/h in CHO + PRO vs. CHO treatment, respectively; P < 0.05). We conclude that, even in a fed state, protein coingestion stimulates whole body and muscle protein synthesis rates during resistance-type exercise.


Author(s):  
Jorn Trommelen ◽  
Andrew M. Holwerda ◽  
Philippe J. M. Pinckaers ◽  
Luc J. C. van Loon

All human tissues are in a constant state of remodelling, regulated by the balance between tissue protein synthesis and breakdown rates. It has been well-established that protein ingestion stimulates skeletal muscle and whole-body protein synthesis. Stable isotope-labelled amino acid methodologies are commonly applied to assess the various aspects of protein metabolism in vivo in human subjects. However, to achieve a more comprehensive assessment of post-prandial protein handling in vivo in human subjects, intravenous stable isotope-labelled amino acid infusions can be combined with the ingestion of intrinsically labelled protein and the collection of blood and muscle tissue samples. The combined application of ingesting intrinsically labelled protein with continuous intravenous stable isotope-labelled amino acid infusion allows the simultaneous assessment of protein digestion and amino acid absorption kinetics (e.g. release of dietary protein-derived amino acids into the circulation), whole-body protein metabolism (whole-body protein synthesis, breakdown and oxidation rates and net protein balance) and skeletal muscle metabolism (muscle protein fractional synthesis rates and dietary protein-derived amino acid incorporation into muscle protein). The purpose of this review is to provide an overview of the various aspects of post-prandial protein handling and metabolism with a focus on insights obtained from studies that have applied intrinsically labelled protein under a variety of conditions in different populations.


1981 ◽  
Vol 241 (4) ◽  
pp. E321-E327 ◽  
Author(s):  
M. N. Goodman ◽  
M. A. McElaney ◽  
N. B. Ruderman

Previous studies have established that 16-wk-old nonobese and obese rats conserve body protein during prolonged starvation. To determine the basis for this, protein synthesis and degradation in skeletal muscle were evaluated in the isolated perfused hindquarters of these rats, in the fed state and when starved for 2, 5, 10, and 11 days. Rats aged 4 and 8 wk were used as a comparison. The results indicate that the response to starvation depends on several factors: the age of the rat, its degree of adiposity, and the duration of the fast. An early event in starvation was a decline in muscle protein synthesis. This occurred in all groups, albeit this reduction occurred more slowly in the older rats. A later response to starvation was an increase in muscle proteolysis. This occurred between 2 and 5 days in the 8-wk-old rats. In 16-wk-old rats it did not occur until between 5 and 10 days, and it was preceded by a period of decreased proteolysis. In 16-wk-old obese rats, a decrease in proteolysis persisted for upwards of 10 days and the secondary increase was not noted during the period of study. The data suggest that the ability of older and more obese rats to conserve body protein during starvation is due, in part, to a curtailment of muscle proteolysis. This adaptation seems to correlate with the availability of lipid fuels.


2020 ◽  
Vol 112 (2) ◽  
pp. 303-317 ◽  
Author(s):  
Tyler A Churchward-Venne ◽  
Philippe J M Pinckaers ◽  
Joey S J Smeets ◽  
Milan W Betz ◽  
Joan M Senden ◽  
...  

ABSTRACT Background Protein ingestion increases skeletal muscle protein synthesis rates during recovery from endurance exercise. Objectives We aimed to determine the effect of graded doses of dietary protein co-ingested with carbohydrate on whole-body protein metabolism, and skeletal muscle myofibrillar (MyoPS) and mitochondrial (MitoPS) protein synthesis rates during recovery from endurance exercise. Methods In a randomized, double-blind, parallel-group design, 48 healthy, young, endurance-trained men (mean ± SEM age: 27 ± 1 y) received a primed continuous infusion of l-[ring-2H5]-phenylalanine, l-[ring-3,5-2H2]-tyrosine, and l-[1-13C]-leucine and ingested 45 g carbohydrate with either 0 (0 g PRO), 15 (15 g PRO), 30 (30 g PRO), or 45 (45 g PRO) g intrinsically l-[1-13C]-phenylalanine and l-[1-13C]-leucine labeled milk protein after endurance exercise. Blood and muscle biopsy samples were collected over 360 min of postexercise recovery to assess whole-body protein metabolism and both MyoPS and MitoPS rates. Results Protein intake resulted in ∼70%–74% of the ingested protein-derived phenylalanine appearing in the circulation. Whole-body net protein balance increased dose-dependently after ingestion of 0, 15, 30, or 45 g protein (mean ± SEM: −0.31± 0.16, 5.08 ± 0.21, 10.04 ± 0.30, and 13.49 ± 0.55 μmol phenylalanine · kg−1 · h−1, respectively; P &lt; 0.001). 30 g PRO stimulated a ∼46% increase in MyoPS rates (%/h) compared with 0 g PRO and was sufficient to maximize MyoPS rates after endurance exercise. MitoPS rates were not increased after protein ingestion; however, incorporation of dietary protein–derived l-[1-13C]-phenylalanine into de novo mitochondrial protein increased dose-dependently after ingestion of 15, 30, and 45 g protein at 360 min postexercise (0.018 ± 0.002, 0.034 ± 0.002, and 0.046 ± 0.003 mole percentage excess, respectively; P &lt; 0.001). Conclusions Protein ingested after endurance exercise is efficiently digested and absorbed into the circulation. Whole-body net protein balance and dietary protein–derived amino acid incorporation into mitochondrial protein respond to increasing protein intake in a dose-dependent manner. Ingestion of 30 g protein is sufficient to maximize MyoPS rates during recovery from a single bout of endurance exercise. This trial was registered at trialregister.nl as NTR5111.


2005 ◽  
Vol 288 (4) ◽  
pp. E645-E653 ◽  
Author(s):  
René Koopman ◽  
Anton J. M. Wagenmakers ◽  
Ralph J. F. Manders ◽  
Antoine H. G. Zorenc ◽  
Joan M. G. Senden ◽  
...  

The present study was designed to determine postexercise muscle protein synthesis and whole body protein balance following the combined ingestion of carbohydrate with or without protein and/or free leucine. Eight male subjects were randomly assigned to three trials in which they consumed drinks containing either carbohydrate (CHO), carbohydrate and protein (CHO+PRO), or carbohydrate, protein, and free leucine (CHO+PRO+Leu) following 45 min of resistance exercise. A primed, continuous infusion of l-[ ring-13C6]phenylalanine was applied, with blood samples and muscle biopsies collected to assess fractional synthetic rate (FSR) in the vastus lateralis muscle as well as whole body protein turnover during 6 h of postexercise recovery. Plasma insulin response was higher in the CHO+PRO+Leu compared with the CHO and CHO+PRO trials (+240 ± 19% and +77 ± 11%, respectively, P < 0.05). Whole body protein breakdown rates were lower, and whole body protein synthesis rates were higher, in the CHO+PRO and CHO+PRO+Leu trials compared with the CHO trial ( P < 0.05). Addition of leucine in the CHO+PRO+Leu trial resulted in a lower protein oxidation rate compared with the CHO+PRO trial. Protein balance was negative during recovery in the CHO trial but positive in the CHO+PRO and CHO+PRO+Leu trials. In the CHO+PRO+Leu trial, whole body net protein balance was significantly greater compared with values observed in the CHO+PRO and CHO trials ( P < 0.05). Mixed muscle FSR, measured over a 6-h period of postexercise recovery, was significantly greater in the CHO+PRO+Leu trial compared with the CHO trial (0.095 ± 0.006 vs. 0.061 ± 0.008%/h, respectively, P < 0.05), with intermediate values observed in the CHO+PRO trial (0.0820 ± 0.0104%/h). We conclude that coingestion of protein and leucine stimulates muscle protein synthesis and optimizes whole body protein balance compared with the intake of carbohydrate only.


Nutrients ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2457 ◽  
Author(s):  
Jess A. Gwin ◽  
David D. Church ◽  
Robert R. Wolfe ◽  
Arny A. Ferrando ◽  
Stefan M. Pasiakos

Protein intake recommendations to optimally stimulate muscle protein synthesis (MPS) are derived from dose-response studies examining the stimulatory effects of isolated intact proteins (e.g., whey, egg) on MPS in healthy individuals during energy balance. Those recommendations may not be adequate during periods of physiological stress, specifically the catabolic stress induced by energy deficit. Providing supplemental intact protein (20–25 g whey protein, 0.25–0.3 g protein/kg per meal) during strenuous military operations that elicit severe energy deficit does not stimulate MPS-associated anabolic signaling or attenuate lean mass loss. This occurs likely because a greater proportion of the dietary amino acids consumed are targeted for energy-yielding pathways, whole-body protein synthesis, and other whole-body essential amino acid (EAA)-requiring processes than the proportion targeted for MPS. Protein feeding formats that provide sufficient energy to offset whole-body energy and protein-requiring demands during energy deficit and leverage EAA content, digestion, and absorption kinetics may optimize MPS under these conditions. Understanding the effects of protein feeding format-driven alterations in EAA availability and subsequent changes in MPS and whole-body protein turnover is required to design feeding strategies that mitigate the catabolic effects of energy deficit. In this manuscript, we review the effects, advantages, disadvantages, and knowledge gaps pertaining to supplemental free-form EAA, intact protein, and protein-containing mixed meal ingestion on MPS. We discuss the fundamental role of whole-body protein balance and highlight the importance of comprehensively assessing whole-body and muscle protein kinetics when evaluating the anabolic potential of varying protein feeding formats during energy deficit.


2019 ◽  
Vol 68 (1) ◽  
pp. 11-15 ◽  
Author(s):  
Robert R Wolfe ◽  
Sanghee Park ◽  
Il-Young Kim ◽  
Paul J Moughan ◽  
Arny A Ferrando

Whole-body protein turnover (protein synthesis, breakdown, and net balance) model enables quantification of the response to a variety of circumstances, including the response to meal feeding. In the fed state, the whole-body protein turnover model requires taking account of the contribution of absorbed tracee to the observed total appearance of tracee in the peripheral blood (exogenous appearance, RaEXO). There are different approaches to estimating RaEXO. The use of an intrinsically labeled dietary protein is based on the overriding assumption that the appearance in the peripheral circulation of a tracer amino acid incorporated into a dietary protein is exactly proportional to the appearance of absorbed tracee. The bioavailability approach is based on the true ileal digestibility of the dietary protein and the irreversible loss of the tracee in the splanchnic bed via hydroxylation of the tracee (phenylalanine). Finally, RaEXO can be estimated as the increase above the basal rate of appearance of the tracee using traditional tracer dilution methodology. In this paper, we discuss the pros and cons of each approach and conclude that the bioavailability method is the least likely to introduce systematic errors and is therefore the preferable approach.


1998 ◽  
Vol 275 (4) ◽  
pp. E577-E583 ◽  
Author(s):  
Kevin E. Yarasheski ◽  
Jeffrey J. Zachwieja ◽  
Jennifer Gischler ◽  
Jan Crowley ◽  
Mary M. Horgan ◽  
...  

Muscle protein wasting occurs in human immunodeficiency virus (HIV)-infected individuals and is often the initial indication of acquired immunodeficiency syndrome (AIDS). Little is known about the alterations in muscle protein metabolism that occur with HIV infection. Nine subjects with AIDS wasting (CD4 < 200/mm3), chronic stable opportunistic infections (OI), and ≥10% weight loss, fourteen HIV-infected men and one woman (CD4 > 200/mm3) without wasting or OI (asymptomatic), and six HIV-seronegative lean men (control) received a constant intravenous infusion of [1-13C]leucine (Leu) and [2-15N]glutamine (Gln). Plasma Leu and Gln rate of appearance (Ra), whole body Leu turnover, disposal and oxidation rates, and [13C]Leu incorporation rate into mixed muscle protein were assessed. Total body muscle mass/fat-free mass was greater in controls (53%) than in AIDS wasting (43%; P = 0.04). Fasting whole body proteolysis and synthesis rates were increased above control in the HIV+ asymptomatic group and in the AIDS-wasting group ( P = 0.009). Whole body Leu oxidation rate was greater in the HIV+ asymptomatic group than in the control and AIDS-wasting groups ( P < 0.05). Fasting mixed muscle protein synthesis rate was increased in the asymptomatic subjects (0.048%/h; P = 0.01) but was similar in AIDS-wasting and control subjects (0.035 vs. 0.037%/h). Plasma Gln Rawas increased in AIDS-wasting subjects but was similar in control and HIV+ asymptomatic subjects ( P < 0.001). These findings suggest that AIDS wasting results from 1) a preferential reduction in muscle protein, 2) a failure to sustain an elevated rate of mixed muscle protein synthesis while whole body protein synthesis is increased, and 3) a significant increase in Gln release into the circulation, probably from muscle. Several interesting explanations for the increased Gln Rain AIDS wasting exist.


1992 ◽  
Vol 263 (4) ◽  
pp. E624-E631 ◽  
Author(s):  
L. Willommet ◽  
Y. Schutz ◽  
R. Whitehead ◽  
E. Jequier ◽  
E. B. Fern

Whole body protein metabolism and resting energy expenditure (REE) were measured at 11, 23, and 33 wk of pregnancy in nine pregnant (not malnourished) Gambian women and in eight matched nonpregnant nonlactating (NPNL) matched controls. Rates of whole body nitrogen flux, protein synthesis, and protein breakdown were determined in the fed state from the level of isotope enrichment of urinary urea and ammonia during a period of 9 h after a single oral dose of [15N]glycine. At regular intervals, REE was measured by indirect calorimetry (hood system). Based on the arithmetic end-product average of values obtained with urea and ammonia, a significant increase in whole body protein synthesis was observed during the second trimester (5.8 +/- 0.4 g.kg-1.day-1) relative to values obtained both for the NPNL controls (4.5 +/- 0.3 g.kg-1.day-1) and those during the first trimester (4.7 +/- 0.3 g.kg-1.day-1). There was a significant rise in REE during the third trimester both in the preprandial and postprandial states. No correlation was found between REE after meal ingestion and the rate of whole body protein synthesis.


Sign in / Sign up

Export Citation Format

Share Document