Relationship between colloid osmotic pressure and plasma protein concentration in the dog

1977 ◽  
Vol 233 (2) ◽  
pp. H295-H298 ◽  
Author(s):  
P. D. Navar ◽  
L. G. Navar

This study was done to establish the correct relationship between protein concentration and plasma colloid osmotic pressure in the dog and to determine the possible influence of the relative albumin and globulin content (A:G ratio). Plasma samples from dogs, rats, and humans were evaluated for total protein concentration, globulin concentration, and colloid osmotic pressure. Samples were concentrated and diluted by ultrafiltration to provide a range of total protein concentrations from 1 to 12 g/dl. Rat and human plasma samples had A:G ratios of 1.4 and 2.1, respectively, and the relationship between protein concentration and colloid osmotic pressure was in agreement with the Landis-Pappenheimer equation. In contrast, dog plasma samples consistently exhibited lower colloid osmotic pressures for any given protein concentration. Two forms of empirical equations were derived to relate these parameters in the dog. Dog plasma samples had higher concentrations of globulin and the A:G ratio averaged 0.59 +/- 0.35 SD. There was a significant relationship between the A:G ratio and the plasma colloid osmotic pressure. Analysis of the possible effect of this altered relationship on glomerular filtration dynamics predicted that efferent plasma colloid osmotic pressure was not specifically affected and was dependent only on the filtration fraction and the plasma colloid osmotic pressure.

1980 ◽  
Vol 239 (6) ◽  
pp. H810-H812
Author(s):  
J. C. Gabel ◽  
R. L. Scott ◽  
T. H. Adair ◽  
R. E. Drake ◽  
D. L. Traber

Several equations to calculate plasma oncotic pressure (pi) from the total protein concentration (C) have been previously described. These equations were derived empirically from samples with a wide range of C obtained by diluting or concentrating normal plasma samples. To test these equations over a range of naturally occurring C, we measured C and pi of plasma samples from 40 dogs. C ranged from 5.3 to 8.7 g/dl and averaged 6.5 +/- 0.1 (mean +/- SE) and pi averaged 17.9 +/- 0.3 mmHg. The regression equation was pi = 78.14 + 1.67 C (r = 0.74). pi increased with C much less than predicted with the commonly used equations. The albumin-to-globulin concentration ratios (A/G), determined in 27 of the dogs, decreased with increasing C (A/G = 1.56-0.128 C, r = 0.62). The lower A/G at the higher C's could cause the lower than predicted increase in pi with C, because the equations were developed from data in which A/G was constant.


1988 ◽  
Vol 64 (2) ◽  
pp. 869-873 ◽  
Author(s):  
S. Yamada ◽  
M. Grady ◽  
N. C. Staub

We have continuously measured protein osmotic pressure of blood and lymph in sheep to compare two kinds of needle osmometers (rigid and flexible) with a membrane osmometer (Wescor). We also compared the averaged values of the continuous measurement with osmotic pressure calculated from total protein and albumin fraction, using the Yamada equation. The rigid-needle and membrane osmometers showed excellent correlation (y = 1.00x + 0.06; r greater than 0.99). The flexible-needle osmometer tended to overestimate osmotic pressure (avg 16%). We used the rigid-needle osmometer for continuous measurements of protein osmotic pressure of blood and lymph in anesthetized or unanesthetized sheep to observe changes in protein osmotic pressure of blood and lymph through the three different interventions. The relationship between the theoretical values (x) and the continuous measurements (y) of osmotic pressure was good (y = 0.99x + 0.16, r = 0.97), but after various interventions, the continuously measured protein osmotic pressure tended to exceed the calculated measurements. The continuous measurement should be monitored with spot samples measured in a stationary osmometer or by calculation of osmotic pressure from total protein concentration and albumin fraction.


1989 ◽  
Vol 61 (3) ◽  
pp. 485-494 ◽  
Author(s):  
J. A. Joles ◽  
E. H. J. M. Jansen ◽  
C. A. Laan ◽  
N. Willekes-Koolschijn ◽  
W. Kortlandt ◽  
...  

1. Analbuminaemic and Sprague-Dawley (control) rats were fed on low- (60 g/kg) protein and control (200 g protein/kg) dietsad lib.from weaning. Males and females were studied separately. Body-weight and plasma protein concentrations were determined at 10 d intervals from 25 to 75 d of age. Electrophoresis of plasma proteins was performed in samples from day 75. Extracellular fluid volume was measured at 10 d intervals from day 45 onwards. Colloid osmotic pressure was measured in plasma and interstitial fluid (wick technique) at the start and end of the trial.2. Body-weight increased much less on the low-protein diet than on the normal diet in both strains and sexes. The growth retardation was slightly more pronounced in the male analbuminaemic rats than in the male Sprague-Dawley controls.3. Plasma protein concentration increased during normal growth in all groups, particularly in the female analbuminaemic rats. This increase was reduced by the 60 g protein/kg diet in all groups, with the exception of the male analbuminaemic rats.4. Differences in plasma colloid osmotic pressure were similar to those seen in plasma protein concentration. Interstitial colloid osmotic pressure was higher in the control rats than in the analbuminaemic ones. The interstitial colloid osmotic pressure increased during growth in the control but not in the analbuminaemic rats. The difference in interstitial colloid osmotic pressure between the strains was maintained during low-protein intake, but at a lower level than during normal protein intake.5. Subtracting interstitial from plasma colloid osmotic pressure, resulted in a rather similar transcapillary oncotic gradient in the various groups at 75 d, both on the control protein diet (11–14 mmHg), and on the lowprotein diet (9–11 mmHg).6. All protein fractions were reduced to a similar extent by the low-protein diet in the control rats, whereas in the analbuminaemic rats protein fractions produced in the liver were more severely depressed.7. Extracellular fluid volume as a percentage of body-weight was similar in all groups, and decreased with increasing age.8. In conclusion, the analbuminaemic rats were able to maintain the transcapillary oncotic gradient on both diets by reducing the interstitial colloid osmotic pressure. Oedema was not observed.9. Despite the absence of albumin, the protein-malnourished analbuminaemic rat is no more susceptible to hypoproteinaemia and oedema than its normal counterpart.


1985 ◽  
Vol 248 (3) ◽  
pp. F444-F448
Author(s):  
A. I. Wolfert ◽  
L. A. Laveri ◽  
D. E. Oken

The colloid osmotic pressure (COP) of efferent arteriolar plasma in glomerular dynamic studies generally is estimated from the measured protein concentration (CE) while the nephron filtration fraction (SNFF) is derived from CE and the systemic plasma protein concentration (CA) according to the equation SNFF = (1 - CA/CE). Estimates of both SNFF and COPE are quite sensitive to small errors in protein measurement, however, with a putative coefficient of variation of +/- 5% in protein measurement at a typical SNFF of 0.33, for example, providing an uncertainty (i.e., +/- SD) of +/- 14% in the SNFF estimate and +/- 2.4 mmHg in the estimated COPE value. In this study, we evaluated in vitro the precision with which the COP of plasma samples can be estimated after ultrafiltration by coupling direct oncometry of native plasma with isotopically measured filtration fractions derived employing nanoliter and microliter volumes and applying a modification of the equation of Ladegaard-Pedersen (Scand. J. Clin. Lab. Invest. 23: 153-158, 1969). The measured and estimated oncotic pressures were then compared. The mean differences between theoretic and measured COP values at filtration fractions of less than 0.1, 0.1-0.2, 0.2-0.3 and greater were: -0.4 +/- 0.8 (SE) (n = 22); 1.8 +/- 1.1; 3.9 +/- 1.0; and 6.0 +/- 1.7%, respectively. It is concluded that the coupling of direct oncometric measurement of arterial plasma colloid osmotic pressure with isotopically determined filtration fractions provides a satisfactory estimate of COPE that is suitable for studies of glomerular dynamics.


1985 ◽  
Vol 58 (5) ◽  
pp. 1521-1527 ◽  
Author(s):  
B. Rippe ◽  
M. I. Townsley ◽  
A. E. Taylor

The filtration coefficient (Kf,c) of the microvessels in isolated dog lungs were studied for whole and diluted blood, whole and diluted plasma, Tyrode's solution, and Tyrode's plus dextran (4%, 63,000 mol wt) perfusates. When whole blood and plasma were diluted, Kf,c increased abruptly at a plasma protein concentration between 4 and 5 g/l, an effect which was not dependent on the erythrocyte mass. Both Tyrode's and Tyrode's plus dextran produced increases in Kf,c (60 and 30%, respectively). The difference in Kf,c measured between these latter perfusates was completely abolished when Kf,c were corrected for viscosity differences. Thus the pulmonary microvasculature responds similarly to the systemic circulation in that complete removal of plasma proteins from the perfusate increases Kf,c by 50%. This effect is independent of erythrocyte mass or colloid osmotic pressure of the perfusate, since perfusion with dextran solutions alone also increased Kf,c.


1992 ◽  
Vol 262 (4) ◽  
pp. H937-H941 ◽  
Author(s):  
R. D. Manning

The long-term effects of hyperproteinemia on blood volume and lymph protein concentration were studied in six conscious dogs over a 17-day period. Plasma protein concentration (PPC) was increased by daily intravenous infusion of approximately 300 ml of previously collected autologous plasma. By day 17 PPC had increased 2.4 g/dl, and plasma colloid osmotic pressure had increased 51%; however, blood volume was not changed. Also, at this time sulfate space, an index of extracellular fluid volume, had increased 12%, prenodal lymph protein concentration had increased from 1.6 to 5.1 g/dl, mean arterial pressure was unchanged, circulating protein mass was increased, and plasma sodium concentration was decreased slightly. In conclusion, the increase in lymph protein concentration during hyperproteinemia may indicate that interstitial fluid protein concentration also increased. This, in turn, would help to prevent any increase in the transcapillary colloid osmotic pressure gradient and thus attenuate any changes in blood volume.


1998 ◽  
Vol 275 (1) ◽  
pp. R135-R140 ◽  
Author(s):  
R. Davis Manning

The long-term responses of lymph flow, lymph protein transport, and the permeability-surface area (PS) product to hyperproteinemia have been studied in conscious dogs. Plasma protein concentration (PPC) was increased by daily intravenous infusion of previously collected autologous plasma for 9 days. Lymph flow was determined by collecting lymph chronically from a lymphatic afferent to the popliteal node in the hind leg. Compared with the average value during the normal-PPC period, the following changes occurred during 10 days of high PPC: lymph flow decreased from 12.3 ± 1.1 to 3.8 ± 0.6 μl/min, lymph protein transport decreased from 241 ± 24 to 141 ± 21 μg/min, PS product decreased from 4.7 ± 0.5 to 3.0 ± 0.5 μl/min, PPC increased from 7.1 ± 0.1 to 8.8 ± 0.4 g/dl, lymph protein concentration increased from 1.9 ± 0.1 to 3.8 ± 0.1 g/dl, plasma colloid osmotic pressure increased from 18.6 ± 0.8 to 24.2 ± 2.1 mmHg, and lymph colloid osmotic pressure increased from 4.8 ± 0.2 to 10.4 ± 0.7 mmHg. In conclusion, long-term hyperproteinemia in dogs resulted in chronic decreases in lymph flow, lymph protein transport, and the PS product and chronic increases in lymph protein concentration and lymph colloid osmotic pressure. The marked decrease in lymph flow during hyperproteinemia decreased lymph protein transport and thus contributed to the increase in lymph protein concentration. In addition, the decreases in PS product and lymph protein transport suggest that transcapillary protein flux decreases during hyperproteinemia.


Author(s):  
Grzegorz Józef Nowicki ◽  
Barbara Ślusarska ◽  
Agnieszka Bartoszek ◽  
Katarzyna Kocka ◽  
Alina Deluga ◽  
...  

Due to its devastating consequences, late life depression is an important public health problem. The aim of the study was the analysis of variables which may potentially influence risk of depression (GDS-SF). Furthermore, the aim was to study possible mediating effect of given variables on the relationship between the total protein concentration and risk of depression in older-adults with chronic diseases, and physical function impairment. The research sample included a total of 132 older adults with chronic conditions and physical function impairments, remaining under a long-term care in residential environment. Negative linear correlation was observed between patients’ physical functionality, total protein concentration, concentration of HDL cholesterol, arm circumference, and the risk of depression. Considerably stronger relationship was observed between total protein concentration, and GDS-SF, in elderly suffering from sensory dysfunction (b = −6.42, 95% CI = −11.27; −1.58). The effect of the mediation between depression risk is correlated to total protein concentration in blood serum, and the mediators are probably low function impairment and low levels of 25 (OH)D vitamin. Cohort control research is suggested to confirm the hypothesis.


Sign in / Sign up

Export Citation Format

Share Document