Cerebral blood flow, glucose use, and CSF ionic regulation in potassium-depleted rats

1988 ◽  
Vol 254 (2) ◽  
pp. H250-H257
Author(s):  
H. Schrock ◽  
W. Kuschinsky

Rats were kept on a low-K+ diet for 25 or 70 days. Local cerebral blood flow (LCBF) and local cerebral glucose utilization (LCGU) were measured in 31 different structures of the brain by means of the [14C]iodoantipyrine and [14C]2-deoxy-D-glucose method. After 25 and 70 days of K+ depletion LCBF was decreased significantly in 27 and 30 structures, respectively, the average decrease being 19 and 25%. In contrast, average LCGU was not changed. Cisternal cerebrospinal fluid (CSF) K+ concentration decreased significantly from 2.65 +/- 0.02 mM in controls to 2.55 +/- 0.02 mM and 2.47 +/- 0.02 mM in the two treated groups (P less than 0.01). CSF [HCO3-], pH, and PCO2 were increased in K+-depleted animals. These data show that K+ depletion induces an increase in CSF pH and a decrease in CSF K+ concentration, both of which cause a reduction in cerebral blood flow. The increased CSF PCO2 is secondary to the reduction of blood flow, since brain metabolism and arterial PCO2 remained constant.

1989 ◽  
Vol 257 (4) ◽  
pp. H1220-H1227 ◽  
Author(s):  
H. Schrock ◽  
W. Kuschinsky

Chronic metabolic alkalosis was induced in rats by combining a low K+ diet with a 0.2 M NaHCO3 solution as drinking fluid for either 15 or 27 days. Local cerebral blood flow and local cerebral glucose utilization were measured in 31 different structures of the brain in conscious animals by means of the iodo-[14C]antipyrine and 2-[14C]deoxy-D-glucose method. The treatment induced moderate [15 days, base excess (BE) 16 mM] to severe (27 days, BE 25 mM) hypochloremic metabolic alkalosis and K+ depletion. During moderate metabolic alkalosis no change in cerebral glucose utilization and blood flow was detectable in most brain structures when compared with controls. Cerebrospinal fluid (CSF) K+ and H+ concentrations were significantly decreased. During severe hypochloremic alkalosis, cerebral blood flow was decreased by 19% and cerebral glucose utilization by 24% when compared with the control values. The decrease in cerebral blood flow during severe metabolic alkalosis is attributed mainly to the decreased cerebral metabolism and to a lesser extent to a further decrease of the CSF H+ concentration. CSF K+ concentration was not further decreased. The results show an unaltered cerebral blood flow and glucose utilization together with a decrease in CSF H+ and K+ concentrations at moderate metabolic alkalosis and a decrease in cerebral blood flow and glucose utilization together with a further decreased CSF H+ concentration at severe metabolic alkalosis.


1992 ◽  
Vol 15 ◽  
pp. 258B
Author(s):  
K. Satoh ◽  
M. Narita ◽  
T. Someya ◽  
S. Takahashi ◽  
T. Suzuki ◽  
...  

1993 ◽  
Vol 265 (4) ◽  
pp. H1243-H1248 ◽  
Author(s):  
K. Waschke ◽  
H. Schrock ◽  
D. M. Albrecht ◽  
K. van Ackern ◽  
W. Kuschinsky

The effects of a blood exchange on cerebral blood flow and glucose utilization were studied. A near to total blood exchange (hematocrit < 3%) was achieved in conscious rats by isovolemic hemodilution. Ultrapurified, polymerized, bovine hemoglobin (UPBHB) served as a blood substitute. Local cerebral blood flow (LCBF) and local cerebral glucose utilization (LCGU) were measured in 34 brain structures of conscious rats by means of the ido[14C]antipyrine and the 2-[14C]-deoxy-D-glucose methods. A group of rats without blood exchange served as control. After blood exchange LCBF increased from 36 to 126% in the different brain structures resulting in a nearly doubled mean cerebral blood flow (+82%). LCGU increased only moderately by 0-24%. Significant increases in LCGU were observed in 16 brain structures. Mean cerebral glucose utilization slightly increased (+14%). The relationship between LCGU and LCBF was found to be tight both in the control group (r = 0.95) as well as after blood replacement (r = 0.94), although it was reset to a higher overall LCBF-to-LCGU ratio. The profound increases in LCBF observed after blood exchange, which were not paralleled by comparable increases in LCGU, might be explained by a reduction of blood viscosity after blood exchange. Additional effects of blood exchange observed in the present study were an increase of mean arterial blood pressure and a decline of heart rate. The results indicate that replacement of blood with the hemoglobin-based oxygen carrier UPBHB appears to meet the cerebral circulatory and metabolic demands of the brain tissue.


1996 ◽  
Vol 270 (4) ◽  
pp. H1441-H1445
Author(s):  
J. Vogel ◽  
R. Abounader ◽  
H. Schrock ◽  
K. Zeller ◽  
R. Duelli ◽  
...  

Plasma perfusion patterns were investigated in brain capillaries during decreased cerebral blood flow induced by hyperventilation. Anesthetized rats were decapitated 3-4 s after being given an intravenous bolus injection of Evans blue dye. the measured steep increase of the arterial dye concentration at this moment ensures that different capillary plasma transit times are reflected in different intracapillary dye concentrations. The observed heterogeneity of capillary plasma transit time was expressed as the coefficient of variation (means +/- SD) of the intracapillary dye concentrations. For comparison, cerebral blood flow was determined at comparable PCO2 values in a second experimental group. At arterial PCO2 values between 40 and 25 mmHg, the cerebral blood flow and the coefficient of variation of the intracapillary dye concentration decreased with decreasing PCO2, whereas at PCO2 values <25 mmHg cerebral blood flow and coefficient of variation did not correlate with the arterial PCO2. However, it cannot be excluded that the coefficient of variation of the intracapillary dye concentration increases between 25 and 14 mmHg and decreases between 14 and 10 mmHg. It is concluded that the reduction of cerebral blood flow measured during moderate hypocapnia is paralleled by a decreased heterogeneity of the brain capillary perfusion. During severe hypocapnia this relationship is lost, indicating a potential disturbance of the cerebral microcirculation.


2001 ◽  
Vol 11 (4) ◽  
pp. 510-519
Author(s):  
Weizhao Zhao ◽  
Ofelia F. Alonso ◽  
Judith Y. Loor ◽  
Raul Busto ◽  
Myron D. Ginsberg

Object Using autoradiographic image averaging, the authors recently described prominent foci of marked glucose metabolism-greater-than-blood-flow uncoupling in the acutely traumatized rat brain. Because hypothermia is known to ameliorate injury in this and other injury models, the authors designed the present study to assess the effects of post-traumatic therapeutic hypothermia on the local cerebral metabolic rate of glucose (LCMRglu) and local cerebral blood flow (LCBF) following moderate parasagittal fluid-percussion head injury (FPI) in rats. Methods Either cranial hypothermia (30°C) or normothermia (37°C) was induced for 3 hours in matched groups of rats immediately after FPI; LCMRglu and LCBF were assessed 3 hours after concluding these temperature manipulations. In rats subjected to FPI, regardless of whether normothermia or hypothermia ensued, LCBF was reduced relative to the sham-injury groups. In addition, when FPI was followed by hypothermia (FPI–30°C group), the subsequent LCBF was significantly lower (35–38% on average) than in FPI–37°C rats. Statistical mapping of LCBF difference imaging data revealed confluent cortical and subcortical zones of significantly reduced LCBF (largely ipsilateral to the prior injury) in FPI–30°C rats relative to the FPI–37°C group. Local glucose utilization was reduced in both hemispheres of FPI–37°C rats relative to the sham-injury group and was lower in the right (traumatized) hemisphere than in the left. However, LCMRglu values were largely unaffected by temperature manipulation in either the FPI or sham-injury groups. The LCMRglu/LCBF ratio was nearly doubled in FPI–30°C rats relative to the FPI–37°C group, in a diffuse and bihemispheric fashion. Linear regression analysis comparing LCMRglu and LCBF revealed that the FPI–37°C and FPI–30°C data sets were completely nonoverlapping, whereas the two sham-injury data sets were intermixed. Conclusions Despite its proven neuroprotective efficacy, early posttraumatic hypothermia (30°C for 3 hours) nonetheless induces a moderate decline in cerebral perfusion without the (anticipated) improvement in cerebral glucose utilization, so that a state of mild metabolism-greater-than-blood-flow dissociation is perpetuated.


1989 ◽  
Vol 9 (5) ◽  
pp. 579-588 ◽  
Author(s):  
Astrid Nehlig ◽  
Anne Pereira de Vasconcelos ◽  
Sylvette Boyet

The postnatal changes in local cerebral blood flow in freely moving rats were measured by means of the quantitative autoradiographic [14C]iodoantipyrine method. The animals were studied at 10, 14, 17, 21, and 35 days and at the adult stage. At 10 days after birth, rates of blood flow were very low and quite homogeneous in most cerebral structures except in a few posterior areas. From these relatively uniform levels, values of local cerebral blood flow rose notably to reach a peak at 17 days in all brain regions studied. Rates of blood flow decreased between 17 and 21 days after birth and then increased from weaning time to reach the known characteristic distribution of the adult rat. The postnatal evolution of local cerebral blood flow in the rat is in good agreement with previous studies in other species such as dog and humans that also show higher rates of cerebral blood flow and glucose utilization at immature stages. However, in the rat, local cerebral blood flow and local cerebral glucose utilization are not coupled over the whole postnatal period studied, since blood flow rates reach peak values at 17 days whereas glucose utilization remains still quite low at that stage. The high rate of cerebral blood flow in the 17-day-old rat may reflect the energetic and biosynthetic needs of the actively developing brain that are completed by the summation of glucose and ketone body utilization.


Sign in / Sign up

Export Citation Format

Share Document