acute administration
Recently Published Documents


TOTAL DOCUMENTS

1335
(FIVE YEARS 198)

H-INDEX

66
(FIVE YEARS 7)

2022 ◽  
Vol 8 ◽  
Author(s):  
Daniel R. Machin ◽  
Heather L. Clifton ◽  
D. Walter Wray ◽  
Tracy M. Frech ◽  
Anthony J. Donato

Systemic sclerosis (SSc) is a rare, auto-immune disease with variably progressive fibrosis of the skin and internal organs, as well as vascular dysfunction. Recently, we demonstrated a decrement in exercising skeletal muscle blood flow and endothelium-dependent vasodilation in SSc, but the mechanisms responsible for these impairments have not been investigated. Thus, we sought to determine if acute administration of tetrahydrobiopterin (BH4), an essential cofactor for endothelial nitric oxide synthase (eNOS), would improve hyperemia and brachial artery vasodilation during progressive handgrip exercise in SSc. Thirteen patients with SSc (63 ± 11 years) participated in this placebo-controlled, randomized, double-blind, crossover study. Tetrahydrobiopterin (10 mg/kg) administration resulted in a ~4-fold increase in circulating BH4 concentrations (P < 0.05). Cardiovascular variables at rest were unaffected by BH4 (P > 0.05). During handgrip exercise, BH4 administration increased brachial artery blood flow (placebo: 200 ± 87; BH4: 261 ± 115 ml/min; P < 0.05) and vascular conductance (placebo: 2.0 ± 0.8; BH4: 2.5 ± 1.0 ml/min/mmHg; P < 0.05), indicating augmented resistance artery vasodilation. Tetrahydrobiopterin administration also increased brachial artery vasodilation in response to exercise (placebo: 12 ± 6; BH4: 17 ± 7%; P < 0.05), resulting in a significant upward shift in the slope relationship between Δ brachial artery vasodilation and Δ shear rate (placebo: 0.030 ± 0.007; BH4: 0.047 ± 0.007; P < 0.05) that indicates augmented sensitivity of the brachial artery to vasodilate to the sustained elevations in shear rate during handgrip exercise. These results demonstrate the efficacy of acute BH4 administration to improve both resistance and conduit vessel endothelial function in SSc, suggesting that eNOS recoupling may be an effective strategy for improving vasodilatory capacity in this patient group.


2022 ◽  
Vol 12 (1) ◽  
pp. 85
Author(s):  
Enrico Adriano ◽  
Annalisa Salis ◽  
Gianluca Damonte ◽  
Enrico Millo ◽  
Maurizio Balestrino

The creatine precursor guanidinoacetate (GAA) was used as a dietary supplement in humans with no adverse events. Nevertheless, it has been suggested that GAA is epileptogenic or toxic to the nervous system. However, increased GAA content in rodents affected by guanidinoacetate methyltransferase (GAMT) deficiency might be responsible for their spared muscle function. Given these conflicting data, and lacking experimental evidence, we investigated whether GAA affected synaptic transmission in brain hippocampal slices. Incubation with 11.5 μM GAA (the highest concentration in the cerebrospinal fluid of GAMT-deficient patients) did not change the postsynaptic compound action potential. Even 1 or 2 mM had no effect, while 4 mM caused a reversible decrease in the potential. Guanidinoacetate increased creatine and phosphocreatine, but not after blocking the creatine transporter (also used by GAA). In an attempt to allow the brain delivery of GAA when there was a creatine transporter deficiency, we synthesized diacetyl guanidinoacetic acid ethyl ester (diacetyl-GAAE), a lipophilic derivative. In brain slices, 0.1 mM did not cause electrophysiological changes and improved tissue viability after blockage of the creatine transporter. However, diacetyl-GAAE did not increase creatine nor phosphocreatine in brain slices after blockage of the creatine transporter. We conclude that: (1) upon acute administration, GAA is neither epileptogenic nor neurotoxic; (2) Diacetyl-GAAE improves tissue viability after blockage of the creatine transporter but not through an increase in creatine or phosphocreatine. Diacetyl-GAAE might give rise to a GAA–phosphoGAA system that vicariates the missing creatine–phosphocreatine system. Our in vitro data show that GAA supplementation may be safe in the short term, and that a lipophilic GAA prodrug may be useful in creatine transporter deficiency.


2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Yina Sun ◽  
Seetha Chebolu ◽  
Denise Henry ◽  
Sandeep Lankireddy ◽  
Nissar A. Darmani

Abstract Background Methamphetamine (MA) is a non-selective monoamine releaser and thus releases serotonin (5-HT), norepinephrine (NE) and dopamine (DA) from corresponding nerve terminals into synapses. DOI ((±)-2, 5-dimethoxy-4-iodoamphetamine) is a direct-acting serotonergic 5-HT2A/C receptor agonist and induces the head-twitch response (HTR) via stimulation of 5-HT2A receptor in mice. While more selective serotonin releasers such as d-fenfluramine evoke the HTR, monoamine reuptake blockers (e.g., cocaine) suppress the DOI-evoked HTR via indirect stimulation of serotonergic 5-HT1A- and adrenergic ɑ2-receptors. Since the induction of HTR by DOI is age-dependent, we investigated whether: (1) during development MA can evoke the HTR by itself, and (2) acute pretreatment with either the selective 5-HT2A receptor antagonist EMD 281014 or low-doses of MA can: (i) modulate the DOI-induced HTR in mice across postnatal days 20, 30 and 60, and (ii) alter the DOI-induced c-fos expression in mice prefrontal cortex (PFC). To further explore the possible modulatory effect of MA on DOI-induced HTR, we investigated whether blockade of inhibitory serotonergic 5-HT1A- or adrenergic ɑ2-receptors by corresponding selective antagonists (WAY 100635 or RS 79948, respectively), can prevent the effect of MA on DOI-induced HTR during aging. Results Although neither EMD 281014 nor MA by themselves could evoke the HTR, acute pretreatment with either EMD 281014 (0.01, 0.05 and 0.1 mg/kg, i.p.) or MA (1, 2.5, 5 mg/kg, i.p.), dose-dependently suppressed the DOI-induced HTR across ages. While WAY 100635 significantly reversed the inhibitory effect of MA in 20- and 30-day old mice, RS 79948 failed to significantly counter MA’s inhibitory effect. Moreover, DOI significantly increased c-fos expressions in several PFC regions. EMD 281014 prevented the DOI-induced increases in c-fos expression. Despite the inhibitory effect of MA on DOI-induced HTR, MA alone or in combination with DOI, significantly increased c-fos expression in several regions of the PFC. Conclusion The suppressive effect of MA on the DOI-evoked HTR appears to be mainly due to functional interactions between the HTR-inducing 5-HT2A receptor and the inhibitory 5-HT1A receptor. The MA-induced increase in c-fos expression in different PFC regions may be due to MA-evoked increases in synaptic concentrations of 5-HT, NE and/or DA.


2022 ◽  
pp. 195-213
Author(s):  
Kiran Mustafa ◽  
Javaria Kanwal ◽  
Samia Khakwani ◽  
Sara Musaddiq

Extensive research suggests that a number of plant-derived chemicals and traditional Oriental herbal remedies possess cognition-enhancing properties. Widely used current treatments for dementia include extracts of Ginkgo biloba and several alkaloidal, and therefore toxic, plant-derived cholinergic agents. Several non-toxic, European herbal species have pan-cultural traditions as treatments for cognitive deficits, including those associated with aging. Acute administration has also been found to reliably improve mnemonic performance in healthy young and elderly cohorts, whilst a chronic regime has been shown to attenuate cognitive declines in sufferers from Alzheimer's disease. The present chapter looks at the ethnobotanical and pharmacological importance of various plants cognitive enhancing and other neuroprotective abilities.


2021 ◽  
Author(s):  
Britta E. Lindquist ◽  
Yuliya Voskobiynyk ◽  
Jeanne T. Paz

Solute carrier family 6 member 1 (SLC6A1) gene encodes GAT-1, a GABA transporter expressed on glia and presynaptic terminals of inhibitory neurons. Mutations in SLC6A1 are associated with myoclonic atonic epilepsy, absence epilepsy, autism, and intellectual disability. However, the mechanisms leading to these defects are unknown. Here, we used a novel mouse model harboring a point mutation (S295L) recently identified in the human SLC6A1 gene that results in impaired membrane trafficking of the GAT-1 protein. We performed chronic wireless telemetry recordings of heterozygous (GAT-1S295L/+) mice, and of mice lacking one or both copies of the Slc6a1 gene (GAT-1+/- and GAT-1-/-). We assessed their behaviors and pharmacosensitivity, and investigated the relationship between seizure burden and behavioral performance. GAT-1S295L/+ mice exhibited frequent spike-wave discharges (SWDs) associated with behavioral arrest, and there was a dose-effect relationship between GAT-1 gene copy number and the severity of electrocorticogram (ECoG) abnormalities. Seizure burden was inversely correlated with behavioral performance. Forelimb grip strength was reduced in female mice. Acute administration of GAT-1 antagonist NO-711 induced SWDs in wild-type mice, exacerbated the phenotype in GAT-1S295L/+ and GAT-1+/- mice, and had no effect on GAT-1-/- mice lacking the drug target. By contrast, ethosuximide normalized the ECoG in GAT-1S295L/+ and GAT-1+/- mice. In conclusion, GAT-1S295L/+ mice show haploinsufficiency with evidence of GAT-1 hypofunction. This mouse model reconstitutes major aspects of human disease and thus provides a useful preclinical model for drug screening and gene therapy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Catherine Fortier ◽  
Charles-Antoine Garneau ◽  
Mathilde Paré ◽  
Hasan Obeid ◽  
Nadège Côté ◽  
...  

Background: Physiologically, the aorta is less stiff than peripheral conductive arteries, creating an arterial stiffness gradient, protecting microcirculation from high pulsatile pressure. However, the pharmacological manipulation of arterial stiffness gradient has not been thoroughly investigated. We hypothesized that acute administration of nitroglycerin (NTG) may alter the arterial stiffness gradient through a more significant effect on the regional stiffness of medium-sized muscular arteries, as measured by pulse wave velocity (PWV). The aim of this study was to examine the differential impact of NTG on regional stiffness, and arterial stiffness gradient as measured by the aortic-brachial PWV ratio (AB-PWV ratio) and aortic-femoral PWV ratio (AF-PWV ratio).Methods: In 93 subjects (age: 61 years, men: 67%, chronic kidney disease [CKD]: 41%), aortic, brachial, and femoral stiffnesses were determined by cf-PWV, carotid-radial (cr-PWV), and femoral-dorsalis pedis artery (fp-PWV) PWVs, respectively. The measurements were repeated 5 min after the sublingual administration of NTG (0.4 mg). The AB-PWV and AF-PWV ratios were obtained by dividing cf-PWV by cr-PWV or fp-PWV, respectively. The central pulse wave profile was determined by radial artery tonometry through the generalized transfer function.Results: At baseline, cf-PWV, cr-PWV, and fp-PWV were 12.12 ± 3.36, 9.51 ± 1.81, and 9.71 ± 1.89 m/s, respectively. After the administration of NTG, there was a significant reduction in cr-PWV of 0.86 ± 1.27 m/s (p < 0.001) and fp-PWV of 1.12 ± 1.74 m/s (p < 0.001), without any significant changes in cf-PWV (p = 0.928), leading to a significant increase in the AB-PWV ratio (1.30 ± 0.39 vs. 1.42 ± 0.46; p = 0.001) and AF-PWV ratio (1.38 ± 0.47 vs. 1.56 ± 0.53; p = 0.001). There was a significant correlation between changes in the AF-PWV ratio and changes in the timing of wave reflection (r = 0.289; p = 0.042) and the amplitude of the heart rate-adjusted augmented pressure (r = − 0.467; p < 0.001).Conclusion: This study shows that acute administration of NTG reduces PWV of muscular arteries (brachial and femoral) without modifying aortic PWV. This results in an unfavorable profile of AB-PWV and AF-PWV ratios, which could lead to higher pulse pressure transmission into the microcirculation.


2021 ◽  
Vol 22 (24) ◽  
pp. 13237
Author(s):  
Aleksandra Szczepkowska ◽  
Maciej Wójcik ◽  
Dorota Tomaszewska-Zaremba ◽  
Hanna Antushevich ◽  
Agata Krawczyńska ◽  
...  

This study was designed to determine the effect of acute caffeine (CAF) administration, which exerts a broad spectrum of anti-inflammatory activity, on the synthesis of pro-inflammatory cytokines and their receptors in the hypothalamus and choroid plexus (ChP) during acute inflammation caused by the injection of bacterial endotoxin—lipopolysaccharide (LPS). The experiment was performed on 24 female sheep randomly divided into four groups: control; LPS treated (iv.; 400 ng/kg of body mass (bm.)); CAF treated (iv.; 30 mg/kg of bm.); and LPS and CAF treated. The animals were euthanized 3 h after the treatment. It was found that acute administration of CAF suppressed the synthesis of interleukin (IL-1β) and tumor necrosis factor (TNF)α, but did not influence IL-6, in the hypothalamus during LPS-induced inflammation. The injection of CAF reduced the LPS-induced expression of TNF mRNA in the ChP. CAF lowered the gene expression of IL-6 cytokine family signal transducer (IL6ST) and TNF receptor superfamily member 1A (TNFRSF1) in the hypothalamus and IL-1 type II receptor (IL1R2) in the ChP. Our study on the sheep model suggests that CAF may attenuate the inflammatory response at the hypothalamic level and partly influence the inflammatory signal generated by the ChP cells. This suggests the potential of CAF to suppress neuroinflammatory processes induced by peripheral immune/inflammatory challenges.


Nutrients ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 4359
Author(s):  
Juan Mielgo-Ayuso ◽  
Laura Pietrantonio ◽  
Aitor Viribay ◽  
Julio Calleja-González ◽  
Jerónimo González-Bernal ◽  
...  

l-Carnitine (l-C) and any of its forms (glycine-propionyl l-Carnitine (GPL-C) or l-Carnitine l-tartrate (l-CLT)) has been frequently recommended as a supplement to improve sports performance due to, among others, its role in fat metabolism and in maintaining the mitochondrial acetyl-CoA/CoA ratio. The main aim of the present systematic review was to determine the effects of oral l-C supplementation on moderate- (50–79% V˙O2 max) and high-intensity (≥80% V˙O2 max) exercise performance and to show the effective doses and ideal timing of its intake. A structured search was performed according to the PRISMA® statement and the PICOS guidelines in the Web of Science (WOS) and Scopus databases, including selected data obtained up to 24 October 2021. The search included studies where l-C or glycine-propionyl l-Carnitine (GPL-C) supplementation was compared with a placebo in an identical situation and tested its effects on high and/or low–moderate performance. The trials that used the supplementation of l-C together with additional supplements were eliminated. There were no applied filters on physical fitness level, race, or age of the participants. The methodological quality of studies was evaluated by the McMaster Critical Review Form. Of the 220 articles obtained, 11 were finally included in this systematic review. Six studies used l-C, while three studies used l-CLT, and two others combined the molecule propionyl l-Carnitine (PL-C) with GPL-C. Five studies analyzed chronic supplementation (4–24 weeks) and six studies used an acute administration (<7 days). The administration doses in this chronic supplementation varied from 1 to 3 g/day; in acute supplementation, oral l-C supplementation doses ranged from 3 to 4 g. On the one hand, the effects of oral l-C supplementation on high-intensity exercise performance variables were analyzed in nine studies. Four of them measured the effects of chronic supplementation (lower rating of perceived exertion (RPE) after 30 min at 80% V˙O2 max on cycle ergometer and higher work capacity in “all-out” tests, peak power in a Wingate test, and the number of repetitions and volume lifted in leg press exercises), and five studies analyzed the effects of acute supplementation (lower RPE after graded exercise test on the treadmill until exhaustion and higher peak and average power in the Wingate cycle ergometer test). On the other hand, the effects of l-C supplementation on moderate exercise performance variables were observed in six studies. Out of those, three measured the effect of an acute supplementation, and three described the effect of a chronic supplementation, but no significant improvements on performance were found. In summary, l-C supplementation with 3 to 4 g ingested between 60 and 90 min before testing or 2 to 2.72 g/day for 9 to 24 weeks improved high-intensity exercise performance. However, chronic or acute l-C or GPL-C supplementation did not present improvements on moderate exercise performance.


2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Idagu Godwin Abraham ◽  
Mubarak Hussaini Ahmad

Abstract Background The plant Culcasia angolensis (Araceae) has diverse ethnomedicinal uses, including the management of rheumatic pain, healing of cuts, dislocations, and bruises. Despite its potential therapeutic uses, the toxicity profile of Culcasia angolensis has not been evaluated. This study assessed the sub-acute toxicity effects of Culcasia angolensis leaves extract (CAE). The phytochemical determination of the CAE was conducted as per the standard protocols. The median lethal dose (LD50) was determined using the Organization for Economic Cooperation and Development (OECD) 423 guideline. Besides, the sub-acute toxic effects of the CAE (125, 250, and 500 mg/kg) were investigated following administration of the CAE daily for 28 consecutive days as per the OECD 407 guideline. The weekly body weights were recorded. The animals were euthanized on the 29th day, and blood samples were obtained for haematological and biochemical investigations. The heart, kidney, liver, and lungs were collected for histological examinations. Besides, the relative organ weights (ROW) were determined. Results The CAE contains cardiac glycosides, alkaloids, tannins, flavonoids, steroids, saponins, and terpenoids. The oral LD50 was above 5 g/kg. There was a remarkable decline in the weekly body weight at all the CAE doses. The CAE increased the lymphocytes, aspartate transaminase, and urea. However, the levels of alanine transaminase and alkaline phosphatase were elevated remarkably. The histological studies did not reveal any serious organs abnormalities. Conclusion The CAE is relatively safe on acute administration. However, it may be slightly toxic on sub-acute administration, especially to the liver and kidney.


2021 ◽  
Vol 23 (Supplement_G) ◽  
Author(s):  
Marco Licciardi ◽  
Elena Utzeri ◽  
Maria Francesca Marchetti ◽  
Roberta Pittau ◽  
Nicola Campana ◽  
...  

Abstract Aims Cannabis (marijuana) is the most consumed drug worldwide, counting roughly 200 million users in 2019 (4% of the global population). Once illegal in most of the world countries, cannabis is now legal for medical and recreational use in several states. During the last 20 years, we have observed a growing decriminalization wave parallel with an increase number of consumers: it is therefore mandatory not only for the cardiologists but for every physician to be aware of marijuana potential cardiovascular adverse health effects. With this paper, we present a case report of cannabis induced 16 s implantable loop recorder (ILR) recorded asystole from hypervagotonia in a 24-year-old heavy marijuana consumer. We focus on the infrequently reported association between syncope and chronic marijuana use and we try to explain the underlying mechanisms against the background of the current literature. Methods and results A 24-year-old presented to the emergency department sent by her cardiologist because of a recent finding of a 16 s asystole on the ILR she implanted 7 months before for recurrent syncopes. She openly declared that she is a heavy marijuana user (at least 5 cannabis-cigarette per day, not mixed up with tobacco, for no less than 12 years). She had a history of at least two spontaneous atypical syncopal episodes and a multitude of pre-syncopal episodes. Before being hospitalized, she underwent several diagnostic tests excluding a neurological etiology and, upon outpatient regimen, she begun a cardiology evaluation which lead to the ILR implantation. While watching TV at late night, the second prodrome-less syncopal episode occurred and a 16-s asystole was found on the ILR. During hospitalization, the patient was closely monitored and we evaluated basic autonomic function tests, carotid sinus massage, echocardiography, exercise stress test, and 24 h telemetry. Following the results of the exams, we considered a heart conduction system anomaly unlikely. Finally, the patient underwent a toxicological and a psychiatric evaluation, where she strongly expressed not wanting to abandon cannabis abuse. After a collective discussion with the heart team, syncope unit, electrophysiologists, and toxicologist, we decided to implant a dual chamber pacemaker with a rate response algorithm due to the high risk of trauma of the syncopal episodes. Conclusions Cannabis cardiovascular effects are not well known; among these we find ischaemic episodes, tachyarrhythmias, symptomatic sinus bradycardia, sinus arrest, and ventricular asystole. In the light of the poor literature, we believe that cannabis may produce opposite adverse effects depending on the duration of the habit. Acute administration increases sympathetic tone and reduces parasympathetic tone; conversely, with chronic intake an opposite effect is observed: repetitive dosing decreases sympathetic activity and increases parasympathetic activity. Physicians should be aware of the effects that cannabis produces upon the cardiovascular system: this could avoid expensive, prolonged hospitalizations, and needless diagnostic tests.


Sign in / Sign up

Export Citation Format

Share Document