scholarly journals Influence of acetaminophen and ibuprofen on skeletal muscle adaptations to resistance exercise in older adults

2011 ◽  
Vol 300 (3) ◽  
pp. R655-R662 ◽  
Author(s):  
Todd A. Trappe ◽  
Chad C. Carroll ◽  
Jared M. Dickinson ◽  
Jennifer K. LeMoine ◽  
Jacob M. Haus ◽  
...  

Evidence suggests that consumption of over-the-counter cyclooxygenase (COX) inhibitors may interfere with the positive effects that resistance exercise training has on reversing sarcopenia in older adults. This study examined the influence of acetaminophen or ibuprofen consumption on muscle mass and strength during 12 wk of knee extensor progressive resistance exercise training in older adults. Thirty-six individuals were randomly assigned to one of three groups and consumed the COX-inhibiting drugs in double-blind placebo-controlled fashion: placebo (67 ± 2 yr; n = 12), acetaminophen (64 ± 1 yr; n = 11; 4 g/day), and ibuprofen (64 ± 1 yr; n = 13; 1.2 g/day). Compliance with the resistance training program (100%) and drug consumption (via digital video observation, 94%), and resistance training intensity were similar ( P > 0.05) for all three groups. Drug consumption unexpectedly increased muscle volume (acetaminophen: 109 ± 14 cm3, 12.5%; ibuprofen: 84 ± 10 cm3, 10.9%) and muscle strength (acetaminophen: 19 ± 2 kg; ibuprofen: 19 ± 2 kg) to a greater extent ( P < 0.05) than placebo (muscle volume: 69 ± 12 cm3, 8.6%; muscle strength: 15 ± 2 kg), when controlling for initial muscle size and strength. Follow-up analysis of muscle biopsies taken from the vastus lateralis before and after training showed muscle protein content, muscle water content, and myosin heavy chain distribution were not influenced ( P > 0.05) by drug consumption. Similarly, muscle content of the two known enzymes potentially targeted by the drugs, COX-1 and -2, was not influenced ( P > 0.05) by drug consumption, although resistance training did result in a drug-independent increase in COX-1 (32 ± 8%; P < 0.05). Drug consumption did not influence the size of the nonresistance-trained hamstring muscles ( P > 0.05). Over-the-counter doses of acetaminophen or ibuprofen, when consumed in combination with resistance training, do not inhibit and appear to enhance muscle hypertrophy and strength gains in older adults. The present findings coupled with previous short-term exercise studies provide convincing evidence that the COX pathway(s) are involved in the regulation of muscle protein turnover and muscle mass in humans.

2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 529-529
Author(s):  
Amanda Randolph ◽  
Tatiana Moro ◽  
Adetutu Odejimi ◽  
Blake Rasmussen ◽  
Elena Volpi

Abstract Type 2 Diabetes Mellitus (T2DM) accelerates the incidence and increases the prevalence of sarcopenia in older adults. This suggests an urgent need for identifying effective sarcopenia treatments for older adults with T2DM. It is unknown whether traditional approaches, such as progressive resistance exercise training (PRET), can effectively counteract sarcopenia in older patients with T2DM. To test the efficacy of PRET for the treatment of sarcopenia in older adults with T2DM, 30 subjects (15 T2DM and 15 age- and sex- matched controls) underwent metabolic testing with muscle biopsies before and after a 13-week full-body PRET program. Primary outcome measures included changes in appendicular lean mass, muscle strength, and mixed muscle fractional synthesis rate (FSR). Before PRET, BMI-adjusted appendicular lean mass was significantly lower in the T2DM group (0.7095±0.0381 versus 0.8151±0.0439, p&lt;0.0001). As a result of PRET, appendicular lean mass adjusted for BMI and muscle strength increased significantly in both groups, but to a lesser extent for the T2DM group (p=0.0009) . Preliminary results for FSR (n=25) indicate that subjects with T2DM had lower basal FSR prior to PRET (p=0.0197) . Basal FSR increased significantly in the control group after PRET (p=0.0196), while it did not change in the T2DM group (p=0.3537). These results suggest that in older adults the positive effect of PRET on muscle anabolism and strength is reduced by T2DM . Thus, older adults with T2DM may require more intensive, multimodal and targeted sarcopenia treatment. Funded by NIH R01AG049611 and P30AG024832.


2020 ◽  
Vol 9 (7) ◽  
pp. 2188 ◽  
Author(s):  
Andreas Mæchel Fritzen ◽  
Frank D. Thøgersen ◽  
Khaled Abdul Nasser Qadri ◽  
Thomas Krag ◽  
Marie-Louise Sveen ◽  
...  

Aging is related to an inevitable loss of muscle mass and strength. The mechanisms behind age-related loss of muscle tissue are not fully understood but may, among other things, be induced by age-related differences in myogenic regulatory factors. Resistance exercise training and deconditioning offers a model to investigate differences in myogenic regulatory factors that may be important for age-related loss of muscle mass and strength. Nine elderly (82 ± 7 years old) and nine young, healthy persons (22 ± 2 years old) participated in the study. Exercise consisted of six weeks of resistance training of the quadriceps muscle followed by eight weeks of deconditioning. Muscle biopsy samples before and after training and during the deconditioning period were analyzed for MyoD, myogenin, insulin-like growth-factor I receptor, activin receptor IIB, smad2, porin, and citrate synthase. Muscle strength improved with resistance training by 78% (95.0 ± 22.0 kg) in the elderly to a similar extent as in the young participants (83.5%; 178.2 ± 44.2 kg) and returned to baseline in both groups after eight weeks of deconditioning. No difference was seen in expression of muscle regulatory factors between elderly and young in response to exercise training and deconditioning. In conclusion, the capacity to gain muscle strength with resistance exercise training in elderly was not impaired, highlighting this as a potent tool to combat age-related loss of muscle function, possibly due to preserved regulation of myogenic factors in elderly compared with young muscle.


2018 ◽  
Vol 108 (5) ◽  
pp. 1043-1059 ◽  
Author(s):  
Dominique S M ten Haaf ◽  
Malou A H Nuijten ◽  
Martijn F H Maessen ◽  
Astrid M H Horstman ◽  
Thijs M H Eijsvogels ◽  
...  

ABSTRACT Background Increasing protein intake has been suggested as an effective strategy to ameliorate age-related loss of muscle mass and strength. Current reviews assessing the effect of protein supplementation are strongly influenced by the inclusion of studies with frail older adults. Objectives We assessed the effect of protein supplementation on lean body mass, muscle strength, and physical performance in exclusively nonfrail community-dwelling older adults. Moreover, we assessed the superior effects of protein supplementation during concomitant resistance exercise training on muscle characteristics. Design A systematic literature search was conducted on PubMed, Embase, and Web of Science up to 15 May 2018. We included randomized controlled trials that assessed the effect of protein supplementation on lean body mass, muscle thigh cross-sectional area, muscle strength, gait speed, and chair-rise ability and performed random-effects meta-analyses. Results Data from 36 studies with 1682 participants showed no significant effects of protein supplementation on changes in lean body mass [standardized mean difference (SMD): 0.11; 95% CI: −0.06, 0.28], handgrip strength (SMD: 0.58; 95% CI: −0.08, 1.24), lower extremity muscle strength (SMD: 0.03; 95% CI: −0.20, 0.27), gait speed (SMD: 0.41; 95% CI: −0.04, 0.85), or chair-rise ability (SMD: 0.10; 95%: CI −0.08, 0.28) compared with a control condition in nonfrail community-dwelling older adults. Moreover, no superior effects of protein supplementation were found during concomitant resistance exercise training on muscle characteristics. Conclusions Protein supplementation in nonfrail community-dwelling older adults does not lead to increases in lean body mass, muscle cross-sectional area, muscle strength, or physical performance compared with control conditions; nor does it exert superior effects when added to resistance exercise training. Habitual protein intakes of most study participants were already sufficient, and protein interventions differed in terms of type of protein, amount, and timing. Future research should clarify what specific protein supplementation protocol is beneficial for nonfrail community-dwelling older adults with low habitual protein intake.


1999 ◽  
Vol 277 (1) ◽  
pp. E118-E125 ◽  
Author(s):  
Kevin E. Yarasheski ◽  
Jina Pak-Loduca ◽  
Debbie L. Hasten ◽  
Kathleen A. Obert ◽  
Mary Beth Brown ◽  
...  

Muscle atrophy (sarcopenia) in the elderly is associated with a reduced rate of muscle protein synthesis. The purpose of this study was to determine if weight-lifting exercise increases the rate of muscle protein synthesis in physically frail 76- to 92-yr-old women and men. Eight women and 4 men with mild to moderate physical frailty were enrolled in a 3-mo physical therapy program that was followed by 3 mo of supervised weight-lifting exercise. Supervised weight-lifting exercise was performed 3 days/wk at 65–100% of initial 1-repetition maximum on five upper and three lower body exercises. Compared with before resistance training, the in vivo incorporation rate of [13C]leucine into vastus lateralis muscle protein was increased after resistance training in women and men ( P < 0.01), although it was unchanged in five 82 ± 2-yr-old control subjects studied two times in 3 mo. Maximum voluntary knee extensor muscle torque production increased in the supervised resistance exercise group. These findings suggest that muscle contractile protein synthetic pathways in physically frail 76- to 92-yr-old women and men respond and adapt to the increased contractile activity associated with progressive resistance exercise training.


1995 ◽  
Vol 268 (2) ◽  
pp. E268-E276 ◽  
Author(s):  
K. E. Yarasheski ◽  
J. J. Zachwieja ◽  
J. A. Campbell ◽  
D. M. Bier

The purpose of this study was to determine whether growth hormone (GH) administration enhances the muscle protein anabolism associated with heavy-resistance exercise training in older men. Twenty-three healthy, sedentary men (67 +/- 1 yr) with low serum insulin-like growth factor I levels followed a 16-wk progressive resistance exercise program (75-90% max strength, 4 days/wk) after random assignment to either a GH (12.5-24 micrograms.kg-1.day-1; n = 8) or placebo (n = 15) group. Fat-free mass (FFM) and total body water increased more in the GH group. Whole body protein synthesis and breakdown rates increased in the GH group after treatment. However, increments in vastus lateralis muscle protein synthesis rate, urinary creatinine excretion, and training-specific isotonic and isokinetic muscle strength were similar in both groups, while 24-h urinary 3-methylhistidine excretion was unchanged after treatment. These observations suggest that resistance exercise training improved muscle strength and anabolism in older men, but these improvements were not enhanced when exercise was combined with daily GH administration. The greater increase in FFM with GH treatment may have been due to an increase in noncontractile protein and fluid retention.


Sign in / Sign up

Export Citation Format

Share Document