Differential effects of bright light and social cues on reentrainment of human circadian rhythms

1995 ◽  
Vol 268 (2) ◽  
pp. R528-R535 ◽  
Author(s):  
K. Honma ◽  
S. Honma ◽  
K. Nakamura ◽  
M. Sasaki ◽  
T. Endo ◽  
...  

Reentrainment of human circadian rhythm to an 8-h advanced schedule of sleep and social contacts was assessed under two different conditions: with and without bright light (4,000-6,000 lx). Subjects spent 15 days without knowing the natural day-night alternation. On the fourth day, the social schedule was phase-advanced by 8 h. In one experiment, a bright light pulse of 3-h duration was given in every subjective morning, and in the other no light pulse was applied. Plasma melatonin and rectal temperature rhythms were measured. Seven of nine subjects showed an orthodromic phase shift, the rate of which was significantly larger with bright light pulses than without them. The maximum phase-advance shift by three consecutive light pulses was observed when the first pulse was applied approximately 4 h after the onset of melatonin rise. By contrast, the maximum phase shift of a similar extent was detected at 1 h after the onset of melatonin rise, when ordinary room light (300-500 lx) at the time corresponding to bright light was regarded as a dim light pulse. It is concluded that bright light accelerates the reentrainment of human circadian rhythm, and bright light and social schedule have differential effects on the reentrainment.

1977 ◽  
Vol 70 (1) ◽  
pp. 183-194
Author(s):  
JACK A. BENSON ◽  
JON W. JACKLET

1. The circadian rhythm of CAP frequency recorded from the optic nerve of isolated eyes at 15 °C was damped out by constant illumination (1100 lux) after several cycles of the rhythm. During illumination (LL) the rhythm was skewed with a rapid rising phase and slow falling phase, and the period was decreased by about 1 h. It is postulated that the circadian clock was stopped by LL at its lowest phase point, and that following cessation of LL, the rhythm was reinitiated from this phase point after a latency of 6-8 h. 2. For light pulses of 80 lux and 1100 lux, the photoresponse of the dark-adapted eye to 20 min light pulses applied beginning at 2 h intervals was not influenced by the circadian clock. At 5 lux there was a periodicity in the magnitude of the photoresponse, in phase with the circadian rhythm of spontaneous CAP production. 3. Small CAPs of non-circadian frequency were recorded together with normal CAPs in about 10% of records of output from isolated eyes. The cells producing the small CAPs had a different temperature sensitivity from those producing normal CAPs. The response of these cells to short light pulses consisted of a phasic burst of activity at light onset, followed by silence during the remainder of the short light pulse, and for 1 or 2 min following cessation of illumination. These small CAPs may be the activity either of H-type receptors or of secondary cells desynchronized from the major population. Note: Laboratory of Sensory Sciences, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, Hawaii 96822, U.S.A.


1982 ◽  
Vol 242 (3) ◽  
pp. R326-R332
Author(s):  
G. Corrent ◽  
A. Eskin ◽  
I. Kay

The finding that serotonin (5-HT) treatments as short as 1.5 h in duration produce phase shifts in a circadian rhythm from the isolated eye of Aplysia suggested that release of 5-HT was part of an ocular entrainment pathway. Since light cycles entrain this rhythm, we compared phase shifting by 5-HT and by light. The similarity in the shapes of the phase-response curves for 5-HT and light pulses indicates that 5-HT treatments are capable of entraining the rhythm. Also, "skeleton" 5-HT treatments phase shift as well as continuous 5-HT treatments. However, 5-HT does not appear to mediate the phase shifts produced by light, since 1) treatments that should block transmitter release do not change the phase shifts produced by light pulses; 2) the response curves of 5-HT and light pulses are displaced by 12 h relative to one another on the phase axis of the response curve; and 3) light-induced phase shifts are apparent almost immediately, whereas 5-HT-induced phase shifts become evident only about 24 h after 5-HT treatment. The eye appears to contain two independent entrainment pathways, one for light and one utilizing 5-HT.


2004 ◽  
Vol 287 (1) ◽  
pp. E174-E181 ◽  
Author(s):  
Claude Gronfier ◽  
Kenneth P. Wright ◽  
Richard E. Kronauer ◽  
Megan E. Jewett ◽  
Charles A. Czeisler

It has been shown in animal studies that exposure to brief pulses of bright light can phase shift the circadian pacemaker and that the resetting action of light is most efficient during the first minutes of light exposure. In humans, multiple consecutive days of exposure to brief bright light pulses have been shown to phase shift the circadian pacemaker. The aim of the present study was to determine whether a single sequence of brief bright light pulses administered during the early biological night would phase delay the human circadian pacemaker. Twenty-one healthy young subjects underwent a 6.5-h light exposure session in one of three randomly assigned conditions: 1) continuous bright light of ∼9,500 lux, 2) intermittent bright light (six 15-min bright light pulses of ∼9,500 lux separated by 60 min of very dim light of <1 lux), and 3) continuous very dim light of <1 lux. Twenty subjects were included in the analysis. Core body temperature (CBT) and melatonin were used as phase markers of the circadian pacemaker. Phase delays of CBT and melatonin rhythms in response to intermittent bright light pulses were comparable to those measured after continuous bright light exposure, even though the total exposure to the intermittent bright light represented only 23% of the 6.5-h continuous exposure. These results demonstrate that a single sequence of intermittent bright light pulses can phase delay the human circadian pacemaker and show that intermittent pulses have a greater resetting efficacy on a per minute basis than does continuous exposure.


2021 ◽  
Vol 15 ◽  
Author(s):  
Javier Alamilla ◽  
Yazmín Ramiro-Cortés ◽  
Adriana Mejía-López ◽  
José-Luis Chavez ◽  
Dulce Olivia Rivera ◽  
...  

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairment in communication and social interaction, repetitive or stereotypical behaviors, altered sensory perception, and sleep disorders. In general, the causes of ASD remain unknown, but in Phelan–McDermid syndrome, it is known that the disorder is related to the haploinsufficiency of the Shank3 gene. We used an autism model with compromised glutamatergic signaling, the Shank3+/– mouse, to study the circadian rhythm architecture of locomotion behavior and its entrainment to light. We also analyzed the synapse between the retinohypothalamic tract (RHT) and the suprachiasmatic nucleus (SCN), employing tract tracing and immunohistochemical techniques. We found that Shank3+/– mice were not impaired in the SCN circadian clock, as indicated by a lack of differences between groups in the circadian architecture in entrained animals to either long or short photoperiods. Circadian rhythm periodicity (tau) was unaltered between genotypes in constant darkness (DD, dim red light). Similar results were obtained in the re-entrainment to shifts in the light–dark cycle and in the entrainment to a skeleton photoperiod from DD. However, Shank3+/– mice showed larger phase responses to light pulses, both delays and advances, and rhythm disorganization induced by constant bright light. Immunohistochemical analyses indicated no differences in the RHT projection to the SCN or the number of SCN neurons expressing the N-methyl-D-aspartate (NMDA) receptor subunit NR2A, whereas the Shank3+/– animals showed decreased c-Fos induction by brief light pulses at CT14, but increased number of vasoactive intestinal polypeptide (VIP)-positive neurons. These results indicate alterations in light sensitivity in Shank3+/– mice. Further studies are necessary to understand the mechanisms involved in such increased light sensitivity, probably involving VIP neurons.


1998 ◽  
Vol 274 (4) ◽  
pp. R991-R996 ◽  
Author(s):  
Elizabeth B. Klerman ◽  
David W. Rimmer ◽  
Derk-Jan Dijk ◽  
Richard E. Kronauer ◽  
Joseph F. Rizzo ◽  
...  

In organisms as diverse as single-celled algae and humans, light is the primary stimulus mediating entrainment of the circadian biological clock. Reports that some totally blind individuals appear entrained to the 24-h day have suggested that nonphotic stimuli may also be effective circadian synchronizers in humans, although the nonphotic stimuli are probably comparatively weak synchronizers, because the circadian rhythms of many totally blind individuals “free run” even when they maintain a 24-h activity-rest schedule. To investigate entrainment by nonphotic synchronizers, we studied the endogenous circadian melatonin and core body temperature rhythms of 15 totally blind subjects who lacked conscious light perception and exhibited no suppression of plasma melatonin in response to ocular bright-light exposure. Nine of these fifteen blind individuals were able to maintain synchronization to the 24-h day, albeit often at an atypical phase angle of entrainment. Nonphotic stimuli also synchronized the endogenous circadian rhythms of a totally blind individual to a non-24-h schedule while living in constant near darkness. We conclude that nonphotic stimuli can entrain the human circadian pacemaker in some individuals lacking ocular circadian photoreception.


1984 ◽  
Vol 247 (2) ◽  
pp. R250-R256
Author(s):  
H. G. Scholubbers ◽  
W. Taylor ◽  
L. Rensing

Membrane properties of whole cells of Gonyaulax polyedra were measured by fluorescence polarization. Circadian changes of fluorescence polarization exist in exponentially growing cultures. They show an amplitude larger than that of stationary cultures, indicating that a part of the change is due to or amplified by an ongoing cell cycle. Measurements of parameters of the circadian glow rhythm were analyzed for possible correlation with the membrane data. Considerable differences (Q10 = 2.5-3.0) in fluorescence polarization were found in cultures kept at different temperatures ranging from 15 to 27.5 degrees C. The free-running period length at different temperatures, on the other hand, differed only slightly (Q10 = 0.9-1.1). Stationary cultures showed higher fluorescence polarization compared with growing cultures, whereas the free-running period lengths did not differ in cultures of various densities and growth rates. Temperature steps of different sign changed the fluorescence polarization slightly in different directions. The phase shift of 4-h pulses (-5, -9, +7 degrees C) resulted in maximal phase advances of 4, 6, and 2 h, respectively. The phasing of the phase-response curves was identical in all these experiments, a finding not to be expected if the pulses act via the measured membrane properties. Pulses of drugs that change the fluorescence polarization (e.g., chlorpromazine and lidocaine) did not or only slightly phase-shift the circadian rhythm.


1985 ◽  
Vol 15 (2) ◽  
pp. 273-289 ◽  
Author(s):  
Alan R. Lang

This article reviews the experimental social psychology literature addressing the relation between drinking and sexuality in normal adult populations. In particular, it examines the role that psychosocial, as opposed to pharmacological, factors may play in alcohol's reputation as an aphrodisiac. The action of learned cognitive expectancies and social meanings surrounding drinking are illustrated in the differential effects that drinking has on the sexual reactions of men and women and of persons with differing personality dispositions. It is concluded that to the extent alcohol serves as an aphrodisiac, it is largely through psychosocially-determined interpretations of physical states and the ease with which attributions to drinking can be used to explain violations of sexual propriety that otherwise would have ego threatening implications.


2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Sevag Kaladchibachi ◽  
Fabian Fernandez

Circadian timekeeping can be reset by brief flashes of light using stimulation protocols thousands of times shorter than those previously assumed to be necessary for traditional phototherapy. These observations point to a future where flexible architectures of nanosecond-, microsecond-, and millisecond-scale light pulses are compiled to reprogram the brain’s internal clock when it has been altered by psychiatric illness or advanced age. In the current review, we present a chronology of seminal experiments that established the synchronizing influence of light on the human circadian system and the efficacy of prolonged bright-light exposure for reducing symptoms associated with seasonal affective disorder. We conclude with a discussion of the different ways that precision flashes could be parlayed during sleep to effect neuroadaptive changes in brain function. This article is a contribution to a special issue onCircadian Rhythms in Regulation of Brain Processes and Role in Psychiatric Disorderscurated by editors Shimon Amir, Karen Gamble, Oliver Stork, and Harry Pantazopoulos.


1993 ◽  
Vol 265 (5) ◽  
pp. R1199-R1204 ◽  
Author(s):  
T. Hamada ◽  
S. Shibata ◽  
A. Tsuneyoshi ◽  
K. Tominaga ◽  
S. Watanabe

In mammals, the suprachiasmatic nucleus (SCN) of the hypothalamus appears to act as a circadian clock. The SCN vasoactive intestinal polypeptide-like immunoreactive neurons, which may act to mediate photic information in the SCN, receive input from neurons immunoreactive for somatostatin (SST). Therefore we investigated the role of SST as a transmitter for entrainment by analyzing the phase-resetting effect of SST on the circadian rhythm of SCN firing activity. Perfusion of SST increased 2-deoxyglucose uptake at circadian time (CT) 18, but not at CT6. A 1-h or 15-min treatment with SST produced phase delays when it was administered at CT13-14 and phase advances at CT22-23. Thus SST-induced phase changes are similar to those for light pulses to animals under constant darkness. The present findings suggest that SST is a transmitter for mediating information of entrainment to circadian clocks within the SCN.


Sign in / Sign up

Export Citation Format

Share Document