Mechanism of bicarbonate exit across basolateral membrane of the rabbit proximal convoluted tubule

1984 ◽  
Vol 246 (6) ◽  
pp. F889-F896 ◽  
Author(s):  
S. Sasaki ◽  
C. A. Berry

To clarify the mechanism(s) of HCO-3 movement across the basolateral membrane, rabbit proximal convoluted tubules were perfused in vitro. Two possible mechanisms were examined: neutral HCO-3 exit coupled to chloride and rheogenic HCO-3 exit. A complete C1- substitution with isethionate in the lumen and bath did not affect HCO-3 reabsorption, suggesting that HCO-3 exit is not coupled to chloride. Addition of 2 mM Ba2+ to the bath, which has been shown to depolarize the basolateral membrane potential difference, caused a 42% inhibition of HCO-3 reabsorption and a 32% inhibition of volume flux, suggesting that HCO-3 exit is rheogenic. Ba2+ did not affect the volume flux when HCO-3 reabsorption was inhibited by acetazolamide, suggesting that the Ba2+ effect is not due to a general inhibition of cell metabolism. From these data we propose that HCO-3 exits the basolateral membrane by a rheogenic, chloride-independent mechanism.

1995 ◽  
Vol 268 (6) ◽  
pp. R1539-R1545 ◽  
Author(s):  
Y. K. Kim ◽  
W. H. Dantzler

We measured the effects of changes in bath K+ concentration ([K+]) on basolateral membrane potential difference (PD) and [3H]tetraethylammonium (TEA) transport in isolated snake (Thamnophis) proximal renal tubules (25 degrees C; pH 7.4). Increasing bath [K+] from 3 to 65 mM decreased PD from -60 mV (inside of cells negative) to -20 mV and 2-min uptake of [3H]TEA by approximately 25%, indicating that PD influences TEA entry into the cells. Uptake of [3H]TEA was inhibited similarly at both K+ concentrations by unlabeled TEA, indicating that uptake is carrier mediated. Kt (approximately 18 microM) for 2-min uptake of [3H]TEA in 3 mM K+ increased significantly in 65 mM K+, suggesting that the decrease in PD or the increase in [K+] alters the affinity of the transporter for TEA. The steady-state cell-to-bath ratio for [3H]TEA with 3 mM K+ (-60 mV PD) was approximately 16, significantly above the ratio of 10 predicted for passive distribution at electrochemical equilibrium. With 65 mM K+ (-20 mV PD) this ratio decreased to approximately 6, again significantly above the predicted ratio of 2. These data suggest that the PD can account for much, but not all, of the steady-state uptake of TEA. Efflux of [3H]TEA across the basolateral membrane was identical with either 3 or 65 mM K+ in the bath but was almost completely inhibited in either case by tetrapentylammonium, a potent inhibitor of TEA uptake. These data indicate that virtually all TEA transport across the basolateral membrane is carrier mediated and that transport out of the cells is unaffected by PD.


1981 ◽  
Vol 240 (3) ◽  
pp. F200-F210 ◽  
Author(s):  
B. Biagi ◽  
T. Kubota ◽  
M. Sohtell ◽  
G. Giebisch

Conventional microelectrodes were used to measure the basolateral membrane potential (VBL) in isolated perfused superficial proximal convoluted (sPCT) and superficial proximal straight (sPST) tubules of the rabbit kidney. Stable recordings for periods up to 2 h can be obtained. The mean +/- SE (n = number of cells) values of VBL were sPCT = -51.0 +/- 1.63 (24) and sPST = -47.0 +/- 0.97 (94) mV. Inhibitors of active transport, ouabain (10(-5) M) and low bath potassium (0.1 mM), caused a significant depolarization of VBL in sPST. In contrast, short-duration bath cooling (10 degrees C) had no significant effect. Removal of luminal glucose caused a larger hyperpolarization in sPCT (-13.9 +/- 1.77 (9) mV) than in sPST (-3.8 +/- 1.02 (5) mV). Removal of luminal glucose and alanine resulted in an even larger hyperpolarization of VBL in sPCT (-19.0 +/- 0.44 (6) mV). Perfusion of the lumen with a solution resembling late proximal tubular fluid in sPST resulted in hyperpolarization of VBL (-4.3 +/- 0.85 (4) mV). Reducing bath pH to 6.7 depolarized VBL (39.9 +/- 1.77 (13) mV). This effect can be associated with a decrease in the relative potassium permeability of the basolateral membrane. These results demonstrate the feasibility of using intracellular electrical measurements to determine both luminal and basolateral membrane characteristics in isolated proximal tubular segments.


1989 ◽  
Vol 257 (3) ◽  
pp. F463-F468 ◽  
Author(s):  
P. D. Bell ◽  
J. Y. Lapointe ◽  
J. Cardinal

At the present time, little is known concerning the electrophysiology of the cells of the macula densa and whether or not these cells are electrically responsive to alterations in luminal fluid composition. To investigate this issue, cortical thick ascending limbs (CTAL) containing macula densa and attached glomeruli were dissected from rabbit kidney and the CTAL perfused in vitro. Basolateral membrane potential (Vbl) was measured with microelectrodes in macula densa cells and, for comparison, in cells of the CTAL. Macula densa Vbl averaged -56.5 +/- 7.6 mV (n = 4) at a (n = 22) at 20 mM NaCl, -35.6 +/- 3.9 mV (n = 16) at 45 mM NaCl, and -25.5 +/- 2.6 mV (n = 32) at 150 mm NaCl. Thus macula densa Vbl depolarized markedly (31 mV) when luminal perfusate [NaCl] was increased from low to high values. In contrast, Vbl measured in CTAL cells averaged -62 +/- 6.1 mV (n = 6) in 45 mM NaCl and did not change significantly as perfusate NaCl was increased to 150 mM. In the presence of 150 mM NaCl, luminal application of furosemide (50 microM) produced a small (3.5 +/- 1.1 mV, n = 16) but statistically significant (P less than 0.02) hyperpolarization in macula densa cells, whereas CTAL cell Vbl hyperpolarized markedly (20 +/- 5.7 mV, n = 6) with addition of furosemide. Finally, neither macula densa cells nor the CTAL cells changed Vbl when 45 mM NaCl solution was made hypotonic by removing mannitol.(ABSTRACT TRUNCATED AT 250 WORDS)


1993 ◽  
Vol 265 (1) ◽  
pp. G1-G8 ◽  
Author(s):  
J. G. Fitz ◽  
S. D. Lidofsky ◽  
B. F. Scharschmidt

Hepatocytes possess several mechanisms for membrane acid-base transport, which work in concert to maintain intracellular pH (pHi) in a narrow physiological range, despite metabolic processes that produce and consume substantial quantities of H+ and HCO3-.Na(+)-H+ and Cl(-)-HCO3- exchangers contribute to recovery from intracellular acidosis and alkalosis, respectively, but are largely inoperative at physiological values of pHi. Recent studies indicate that hepatocytes also possess a mechanism for coupled transport of Na+ and HCO3- across the basolateral membrane. This appears to be the dominant pathway for membrane acid-base transport operative under basal conditions, mediates influx of Na+ and HCO3-, and is an important contributor to recovery from intracellular acidosis. In this review, the properties of hepatic Na(+)-HCO3- cotransport are described with emphasis on its effects on pHi and Na+ homeostasis and on the possible role of membrane potential difference as a signal modulating the rate of HCO3- influx and pHi of hepatocytes through effects on this transporter.


1987 ◽  
Vol 252 (1) ◽  
pp. F11-F18 ◽  
Author(s):  
S. Sasaki ◽  
T. Shiigai ◽  
N. Yoshiyama ◽  
J. Takeuchi

To clarify the mechanism(s) of HCO3- (or related base) transport across the basolateral membrane, rabbit proximal straight tubules were perfused in vitro, and intracellular pH (pHi) and Na+ activity (aiNa) were measured by double-barreled ion-selective microelectrodes. Lowering bath HCO3- from 25 to 5 mM at constant PCO2 depolarized basolateral membrane potential (Vbl), and reduced pHi. Most of these changes were inhibited by adding 1 mM 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS) to the bath. Total replacement of bath Na+ with choline also depolarized Vbl and reduced pHi, and these changes were also inhibited by SITS. Reduction in aiNa was observed when bath HCO3- was lowered. Taken together, these findings suggest that HCO3- exists the basolateral membrane with Na+ and negative charge. Calculation of the electrochemical driving forces suggests that the stoichiometry of HCO3-/Na+ must be larger than two for maintaining HCO3- efflux. Total replacement of bath Cl- with isethionate depolarized Vbl gradually and increased pHi slightly, implying the existence of a Cl(-)-related HCO3- exit mechanism. The rate of decrease in pHi induced by lowering bath HCO3- was slightly reduced (20%) by the absence of bath Cl-. Therefore, the importance of Cl(-)-related HCO3- transport is small relative to total basolateral HCO3- exit. Accordingly, these data suggest that most of HCO3- exits the basolateral membrane through the rheogenic Na+/HCO3- cotransport mechanism with a stoichiometry of HCO3-/Na+ of more than two.


1976 ◽  
Vol 3 (5) ◽  
pp. 677
Author(s):  
C.J Doughty ◽  
A.B Hope

Effects of 254 nm ultraviolet irradiation on the plasmalemma potential difference and conductance in C, corallina have been further analysed. Following an increase in passive chloride permeability, revealed from previous studies, and which is manifested as a depolarization of membrane potential difference and an increase in membrane conductance, a secondary depolarization was prominent at pH 7 and is attributed to u.v.-induced inhibition of an electrogenic pump. The secondary depolarization was usually accompanied by a decrease in membrane conductance. For doses of u.v. of 1400 J m-2, these effects were almost reversible within about 1 h


Sign in / Sign up

Export Citation Format

Share Document