Normal arterial blood pH, oxygen, and carbon dioxide tensions in unanesthetized dogs

1972 ◽  
Vol 32 (1) ◽  
pp. 152-153 ◽  
Author(s):  
Eric O. Feigl ◽  
Louis G. D'Alecy

Femoral artery blood samples from 30 unanesthetized unrestrained nonpanting dogs were analyzed. Average normal pH was 7.42 (sd 0.03), mean Po2 89.5 mm Hg (sd 4.4), and Pco2 36.8 mm Hg (sd 2.4). pH was determined with a glass electrode. Pco2 was measured using a Severinghaus electrode. Po2 was determined with a Clark-type polarographic polypropylene-covered electrode. Measurements were made at 39 C (normal dog rectal temperature). blood gas; Clark electrode; Severinghaus electrode

2008 ◽  
Vol 60 (6) ◽  
pp. 1461-1467
Author(s):  
A.P. Ribeiro ◽  
S.N. Vitaliano ◽  
R. Thiesen ◽  
A. Escobar ◽  
J.P. Duque Ortiz ◽  
...  

The intraocular pressure (IOP) and its correlations with arterial carbon dioxide partial pressure (PaCO2) and arterial pH were studied in five crested caracaras (Caracara plancus) anesthetized with isoflurane (ISO) and sevoflurane (SEV). Baseline IOP values were measured in both eyes (M0). Brachial artery was previously catheterized to obtain blood gas and cardiorespiratory analysis. Anesthesia was induced with 5% ISO and maintained with 2.5% for 40 minutes. IOP measurements and blood samples were evaluated in different moments until the end of the procedure. After recovering, a second anesthesia was induced with 6% SEV and maintained with 3.5%. Parameters were evaluated at the same time points of the previous procedure. IOP reduced significantly (P= 0.012) from M0 at all time points and no significative changes were observed between ISO and SEV anesthesias. Correlation between IOP and PaCO2 and between PIO and blood pH were found only for SEV. IOP and blood pH decreased in parallel with IOP, whereas values of PaCO2 increased in caracaras anesthetized with isoflurane and sevoflurane.


1989 ◽  
Vol 12 (2) ◽  
pp. 103-110 ◽  
Author(s):  
B. Agazia ◽  
L. Guarda ◽  
C. Lombini ◽  
E. Saporiti

We tested a transcutaneous (tc) oxygen (O2) and carbon dioxide (COz) sensor in 15 normal adults and in 20 patients on regular dialysis treatment (RDT). We compared the tc gas values (ptcO2, PtcCO2) with the gas tension values in arterial blood samples (PaO2, PaCO2), in normal adults and in RDT-patients at the end of a 30-min test and six times during RDT. During the test, PtcO2 correlated with PaO2 both in normal adults (r 0.72p<0.01) and in RDT patients (r 0.41 p<0.05). PtcCO2 correlated with PaCO2 (r 0.59 in normal adults and r 0.76 in RDT). During 14 acetate dialyses the changes were expressed as %Δ from time 0. %Δ PaO2 was – 12.7 at 60 min, + 4.8 at 240 min; %Δ PtcO2 – 6.0 at 60 min, + 9.7 at 240 min; %Δ PaCO2 – 17.7 at 240 min, – 1.8 1 h later; %Δ PtcCO2 was – 15.8 at 240 min, – 3.2 1 h later. Both in normal adults and in RDT, patients there was a good relationship between PtcCO2 and PaCO2 values. In normal adults the absolute PtcO2 values were always lower than PaO2 (– 14.4± 10 mmHg); in RDT-patients this difference was more pronounced (– 27.6± 15.1) and is probably attributable to the lower Hb levels (6.7± 1.1 vs 12.4± 1.2). During RDT the pattern was the same between tc and gas tension values. The tc-sensor seems to be useful in continuous monitoring, especially in acetate dialysis and/or in patients suspected of developing hypoxemia, but it cannot replace direct blood gas measurements in arterial blood samples.


2021 ◽  
pp. 039139882098785
Author(s):  
Lawrence Garrison ◽  
Jeffrey B Riley ◽  
Steve Wysocki ◽  
Jennifer Souai ◽  
Hali Julick

Measurements of transcutaneous carbon dioxide (tcCO2) have been used in multiple venues, such as during procedures utilizing jet ventilation, hyperbaric oxygen therapy, as well as both the adult and neo-natal ICUs. However, tcCO2 measurements have not been validated under conditions which utilize an artificial lung, such cardiopulmonary bypass (CPB). The purpose of this study was to (1) validate the use of tcCO2 using an artificial lung during CPB and (2) identify a location for the sensor that would optimize estimation of PaCO2 when compared to the gold standard of blood gas analysis. tcCO2 measurements ( N = 185) were collected every 30 min during 54 pulsatile CPB procedures. The agreement/differences between the tcCO2 and the PaCO2 were compared by three sensor locations. Compared to the earlobe or the forehead, the submandibular PtcCO2 values agreed best with the PaCO2 and with a median difference of –.03 mmHg (IQR = 5.4, p < 0.001). The small median difference and acceptable IQR support the validity of the tcCO2 measurement. The multiple linear regression model for predicting the agreement between the submandibular tcCO2 and PaCO2 included the SvO2, the oxygenator gas to blood flow ratio, and the native perfusion index ( R2 = 0.699, df = 1, 60; F = 19.1, p < 0.001). Our experience in utilizing tcCO2 during CPB has demonstrated accuracy in estimating PaCO2 when compared to the gold standard arterial blood gas analysis, even during CO2 flooding of the surgical field.


Perfusion ◽  
2006 ◽  
Vol 21 (1) ◽  
pp. 21-26 ◽  
Author(s):  
Frode Kristiansen ◽  
Jan Olav Høgetveit ◽  
Thore H Pedersen

This paper presents the clinical testing of a new capno-graph designed to measure the carbon dioxide tension at the oxygenator exhaust outlet in cardiopulmonary bypass (CPB). During CPB, there is a need for reliable, accurate and instant estimates of the arterial blood CO2 tension (PaCO2) in the patient. Currently, the standard practice for measuring PaCO2 involves the manual collection of intermittent blood samples, followed by a separate analysis performed by a blood gas analyser. Probes for inline blood gas measurement exist, but they are expensive and, thus, unsuitable for routine use. A well-known method is to measure PexCO2, ie, the partial pressure of CO2 in the exhaust gas output from the oxygenator and use this as an indirect estimate for PaCO2. Based on a commercially available CO2 sensor circuit board, a laminar flow capnograph was developed. A standard sample line with integrated water trap was connected to the oxygenator exhaust port. Fifty patients were divided into six different groups with respect to oxygenator type and temperature range. Both arterial and venous blood gas samples were drawn from the CPB circuit at various temperatures. Alfa-stat corrected pCO2 values were obtained by running a linear regression for each group based on the arterial temperature and then correcting the PexCO2 accordingly. The accuracy of the six groups was found to be (±SD): ±4.3, ±4.8, ±5.7, ±1.0, ±3.7 and ±2.1%. These results suggest that oxygenator exhaust capnography is a simple, inexpensive and reliable method of estimating the PaCO2 in both adult and pediatric patients at all relevant temperatures.


1978 ◽  
Vol 44 (4) ◽  
pp. 534-537 ◽  
Author(s):  
M. Maskrey ◽  
P. P. Hoppe ◽  
O. S. Bamford

Five adult male dik-dik (Madoqua kirkii) were exposed in a climatic chamber to an air temperature of 45 degrees C. Measurements were made of rectal temperature (Tre) and respiratory frequency (f) and arterial blood samples taken before and during heat exposure were analyzed for pH, PCO2 and PO2. During exposure, Tre and f increased in all animals. In the first 80 min dik-dik displayed thermal tachypnea and minor changes in blood gases. Continued exposure lead to hyperpnea accompanied by a fall in PaCO2 and a rise in pH. PaCO2 at first fell and then increased toward or above control levels. The dik-dik did not display second phase breathing. This observation confirms that second phase breathing is not essential to the development of respiratory alkalosis. The main conclusion of the study is that the dik-dik, unlike another heat-adapted antelope, the wildebeest (Taylor, Robertshaw, and Hoffmann. Am. J. Physiol. 217:907–910, 1969), is unable to resist alkalosis during heat stress.


Author(s):  
Nazlıhan Boyacı ◽  
Sariyya Mammadova ◽  
Nurgül Naurizbay ◽  
Merve Güleryüz ◽  
Kamil İnci ◽  
...  

Background: Transcutaneous partial pressure of carbon dioxide (PtCO2) monitorization provides a continuous and non-invasive measurement of partial pressure of carbon dioxide (pCO2). In addition, peripheral oxygen saturation (SpO2) can also be measured and followed by this method. However, data regarding the correlation between PtCO2 and arterial pCO2 (PaCO2) measurements acquired from peripheric arterial blood gas is controversial. Objective: We aimed to determine the reliability of PtCO2 with PaCO2 based on its advantages, like non-invasiveness and continuous applicability. Methods: Thirty-five adult patients with hypercapnic respiratory failure admitted to our tertiary medical intensive care unit (ICU) were included. Then we compared PtCO2 and PaCO2 and both SpO2 measurements simultaneously. Thirty measurements from the deltoid zone and 26 measurements from the cheek zone were applied. Results: PtCO2 could not be measured from the deltoid region in 5 (14%) patients. SpO2 and pulse rate could not be detected at 8 (26.7%) of the deltoid zone measurements. Correlation coefficients between PtCO2 and PaCO2 from deltoid and the cheek region were r: 0,915 and r: 0,946 (p = 0,0001). In comparison with the Bland-Altman test, difference in deltoid measurements was -1,38 ± 1,18 mmHg (p = 0.252) and in cheek measurements it was -5,12 ± 0,92 mmHg (p = 0,0001). There was no statistically significant difference between SpO2 measurements in each region. Conclusion: Our results suggest that PtCO2 and SpO2 measurements from the deltoid region are reliable compared to the arterial blood gas analysis in hypercapnic ICU patients. More randomized controlled studies investigating the effects of different measurement areas, hemodynamic parameters, and hemoglobin levels are needed.


1974 ◽  
Vol 60 (3) ◽  
pp. 901-908
Author(s):  
M. G. EMíLIO

1. The respiratory exchanges through the lungs and skin of frogs and the time courses of blood gas concentrations were studied during emergence and diving periods. 2. Most of the total oxygen uptake is carried out through the lungs. The partial pressure of oxygen in arterial blood falls to very low levels a few minutes after diving, showing that the cutaneous respiratory surface cannot compensate for the lack of lung respiration. 3. Most of the metabolic carbon dioxide is disposed of through the skin. Although the skin output is maintained through diving periods, there is an important rise in the partial pressure of carbon dioxide in blood following submergence. However, the total concentration of CO2 in the blood decreases, as does the blood pH value. 4. This phenomenon is probably the result of a metabolic acidosis due to the switching on of anaerobic processes during diving periods.


1993 ◽  
Vol 75 (1) ◽  
pp. 285-293 ◽  
Author(s):  
J. Qvist ◽  
W. E. Hurford ◽  
Y. S. Park ◽  
P. Radermacher ◽  
K. J. Falke ◽  
...  

Korean female unassisted divers (cachido ama) breath-hold dive > 100 times to depths of 3–7 m during a work day. We sought to determine the extent of arterial hypoxemia during normal working dives and reasonable time limits for breath-hold diving by measuring radial artery blood gas tensions and pH in five cachido ama who dove to a fixed depth of 4–5 m and then continued to breath hold for various times after their return to the surface. Eighty-two blood samples were withdrawn from indwelling radial artery catheters during 37 ocean dives. We measured compression hyperoxia [arterial PO2 = 141 +/- 24 (SD) Torr] and hypercapnia (arterial PCO2 = 46.6 +/- 2.4 Torr) at depth. Mean arterial PO2 near the end of breath-hold dives lasting 32–95 s (62 +/- 14 s) was decreased (62.6 +/- 13.5 Torr). Mean arterial PCO2 reached 49.9 +/- 5.4 Torr. Complete return of these values to their baseline did not occur until 15–20 s after breathing was resumed. In dives of usual working duration (< 30 s), blood gas tensions remained within normal ranges. Detailed analysis of hemoglobin components and intrinsic oxygenation properties revealed no evidence for adaptive changes that could increase the tolerance of the ama to hypoxic or hypothermic conditions associated with repetitive diving.


Sign in / Sign up

Export Citation Format

Share Document