Effects of treadmill exercise to exhaustion on the insulin response to hyperglycemia in untrained men

1991 ◽  
Vol 70 (1) ◽  
pp. 246-250 ◽  
Author(s):  
J. P. Kirwan ◽  
R. E. Bourey ◽  
W. M. Kohrt ◽  
M. A. Staten ◽  
J. O. Holloszy

The effects of a single bout of exercise to exhaustion on pancreatic insulin secretion were determined in seven untrained men by use of a 3-h hyperglycemic clamp with plasma glucose maintained at 180 mg/100 ml. Clamps were performed either 12 h after an intermittent treadmill run at approximately 77% maximum O2 consumption or without prior exercise. Arterialized blood samples for glucose, insulin, and C-peptide determination were obtained from a heated hand vein. The peak insulin response during the early phase (0–10 min) of the postexercise clamp was higher (81 +/- 8 vs. 59 +/- 9 microU/ml; P less than 0.05) than in the nonexercise clamp. Incremental areas under the insulin (376 +/- 33 vs. 245 +/- 51 microU.ml-1.min) and C-peptide (17 +/- 2 vs. 12 +/- 1 ng.ml-1.min) curves were also greater (P less than 0.05) during the early phase of the postexercise clamp. No differences were observed in either insulin concentrations or whole body glucose disposal during the late phase (15–180 min). Area under the C-peptide curve was greater during the late phase of the postexercise clamp (650 +/- 53 vs. 536 +/- 76 ng.ml-1.min, P less than 0.05). The exercise bout induced muscle soreness and caused an elevation in plasma creatine kinase activity (142 +/- 32 vs. 305 +/- 31 IU/l; P less than 0.05) before the postexercise clamp. We conclude that in untrained men a bout of running to exhaustion increased pancreatic beta-cell insulin secretion during the early phase of the hyperglycemic clamp. Increased insulin secretion during the late phase of the clamp appeared to be compensated by increased insulin clearance.

1993 ◽  
Vol 75 (5) ◽  
pp. 2151-2156 ◽  
Author(s):  
D. S. King ◽  
T. L. Feltmeyer ◽  
P. J. Baldus ◽  
R. L. Sharp ◽  
J. Nespor

The effects of an exhaustive bout of eccentric exercise on insulin secretion and action were determined using the hyperglycemic clamp technique. Clamps were performed on eight healthy men after 7 days of inactivity and approximately 36 h after a bout of eccentric exercise. Eccentric exercise consisted of 10 sets of 10 repetitions of combined knee extensions and flexions for each leg at a mean torque 84 +/- 5% of peak concentric torque. During the hyperglycemic clamp procedure, plasma glucose concentration was acutely raised to 10 mmol/l and was maintained near this level for 120 min. Arterialized blood samples were obtained from a heated hand vein to determine plasma glucose and insulin concentrations. Eccentric exercise appeared to produce marked muscle damage, as indicated by a 50-fold increase in plasma creatine phosphokinase (100 +/- 17 vs. 5,209 +/- 3,811 U/l, P < 0.001) and subjective reports of muscle soreness. Peak insulin response during the early phase (0–10 min) of the hyperglycemic clamp was higher after eccentric exercise (183 +/- 38 microU/ml) than after the control clamp (100 +/- 23 microU/ml, P < 0.005). Late-phase (10- to 120-min) insulin response was not altered after eccentric exercise. Peak plasma C-peptide concentrations were higher during the early phase (5.0 +/- 0.7 vs. 4.3 +/- 0.8 ng/ml, P < 0.05) and the late phase (7.5 +/- 0.9 vs. 5.4 +/- 0.6 ng/ml, P < 0.05). Prior eccentric exercise had no significant effect on whole body glucose disposal or glucose disposal rate adjusted for prevailing plasma insulin concentration. These data provide evidence that a single bout of eccentric exercise causes an increase in pancreatic beta-cell insulin secretion in response to hyperglycemia.


1988 ◽  
Vol 254 (5) ◽  
pp. E537-E542 ◽  
Author(s):  
D. S. King ◽  
G. P. Dalsky ◽  
W. E. Clutter ◽  
D. A. Young ◽  
M. A. Staten ◽  
...  

We employed the hyperglycemic clamp technique to investigate the effects of short-term inactivity on insulin secretion in nine (8 men, 1 woman) well-trained subjects. A 3-h hyperglycemic clamp (plasma glucose approximately 180 mg/100 ml) was performed approximately 16 h after a usual training bout and again 14 days after stopping exercise training. There was no significant change in body composition during this short period of inactivity. The mean plasma insulin response to an identical glycemic stimulus was 67% higher after 14 days without exercise (45 +/- 7 after vs. 27 +/- 4 microU/ml before stopping exercise training). Marked increases in the early (0-10 min, 150 +/- 28 vs. 101 +/- 15 microU.ml-1.min) and late (10-180 min, 6,051 +/- 1,257 vs. 3,521 +/- 749 microU.ml-1.min) incremental insulin areas were observed as a result of the physical inactivity. Incremental areas for C-peptide were also elevated significantly in the inactive state for early (12 +/- 2.0 vs. 7 +/- 1 ng.ml-1.min) and late (567 +/- 90 vs. 467 +/- 85 ng.ml-1.min) phases. Urinary excretion of C-peptide increased from 12.1 +/- 1.5 ng/240 min in the exercising state to 21.8 +/- 3.6 ng/240 min in the inactive state. Rates of whole body glucose disposal were not different between exercising and inactive states, indicating a large increase in resistance to the action of insulin. These findings indicate that the decreased insulin secretory response to a glucose stimulus in people who exercise regularly is a relatively short-term effect of exercise.


2008 ◽  
Vol 295 (2) ◽  
pp. E401-E406 ◽  
Author(s):  
Muhammad A. Abdul-Ghani ◽  
Masafumi Matsuda ◽  
Rucha Jani ◽  
Christopher P. Jenkinson ◽  
Dawn K. Coletta ◽  
...  

To assess the relationship between the fasting plasma glucose (FPG) concentration and insulin secretion in normal glucose tolerance (NGT) and impaired glucose tolerance (IGT) subjects, 531 nondiabetic subjects with NGT ( n = 293) and IGT ( n = 238; 310 Japanese and 232 Mexican Americans) received an oral glucose tolerance test (OGTT) with measurement of plasma glucose, insulin, and C-peptide every 30 min. The insulin secretion rate was determined by plasma C-peptide deconvolution. Insulin sensitivity (Matsuda index) was measured from plasma insulin and glucose concentrations. The insulin secretion/insulin resistance (IS/IR) or disposition index was calculated as ΔISR/ΔG ÷ IR. As FPG increased in NGT subjects, the IS/IR index declined exponentially over the range of FPG from 70 to 125 mg/dl. The relationship between the IS/IR index and FPG was best fit with the equation: 28.8 exp(−0.036 FPG). For every 28 mg/dl increase in FPG, the IS/IR index declined by 63%. A similar relationship between IS/IR index and FPG was observed in IGT. However, the decay constant was lower than in NGT. The IS/IR index for early-phase insulin secretion (0–30 min) was correlated with the increase in FPG in both NGT and IGT ( r = −0.43, P < 0.0001 and r = −0.20, P = 0.001, respectively). However, the correlation between late-phase insulin secretion (60–120 min) and FPG was not significant. In conclusion, small increments in FPG, within the “normal” range, are associated with a marked decline in glucose-stimulated insulin secretion and the decrease in insulin secretion with increasing FPG is greater in subjects with NGT than IGT and primarily is due to a decline in early-phase insulin secretion.


1989 ◽  
Vol 121 (2) ◽  
pp. 251-258 ◽  
Author(s):  
Ole Schmitz

Abstract. To test secretory capacity of the beta-cell to a glucose stimulus in uremic patients on chronic dialysis, three hyperglycemic clamps (plasma glucose increments: 1, 4.5 and 11 mmol/l) were performed in 8 uremic and 8 healthy subjects. Early-phase insulin and C-peptide responses (ΔI and ΔC) during the initial 6 min were consistently exaggerated at all three steps in uremic patients compared with controls (ΔI. 16 ± 4 vs 4 ± 2, 41 ± 11 vs 15 ± 4 and 60 ± 12 vs 24 ± 5 mU/l; ΔC. 0.39 ± 0.13 vs 0.07 ± 0.02, 0.40 ± 0.13 vs 0.16 ± 0.02 and 0.73 ± 0.15 vs 0.29 ± 0.04 nmol/l, p < 0.05 in all cases). Similarly, late-phase insulin secretion defined as the insulin increment between 90 and 120 min after initiation of the glucose challenge was enhanced in uremic patients at the two highest glycemic steps (44 ± 10 vs 16 ± 2 and 123 ± 29 vs 44 ± 5 mU/l, both p < 0.01). The raised late-phase insulin response allowed comparable glucose disposal in the two groups (uremic patients: 9.2 ± 1.0 and 15.5 ± 1.6 mg · kg−1 · min−1· Controls: 9.0 ± 1.3 and 19.9 ± 2.4 mg · kg−1 · min−1). The slopes of potentiation, i.e. the slopes of the regression lines expressing the relationship between changes in insulin increments and changes in glucose, were markedly steeper in uremic patients (0.45 ± 0.09 and 0.66 ± 0.20, early and late-phase respectively) than in controls (0.20 ± 0.06 and 0.25 ± 0.03). No relationship between serum insulin responses and electrolytes or PTH was demonstrated. In conclusion, despite several factors which may inhibit the ability of the beta-cell to respond to a glucose stimulus, acute hyperglycemia elicits in insulin-resistant uremic subjects an exaggerated early and late-phase insulin secretion which is able to compensate for insulin resistance, thereby maintaining normal glucose disposal.


2011 ◽  
Vol 301 (5) ◽  
pp. E984-E990 ◽  
Author(s):  
Seung-Hwan Lee ◽  
Andrea Tura ◽  
Andrea Mari ◽  
Seung-Hyun Ko ◽  
Hyuk-Sang Kwon ◽  
...  

Improved glucose tolerance following a sequential meal is known as the second-meal phenomenon. We aimed to investigate its extent and underlying mechanisms in patients with type 2 diabetes. Metabolic responses after lunch in 12 diabetic patients were compared on two separate days: one with (Day BL) and another without (Day FL) breakfast. The responses of hormones were calculated by the incremental area under the curve (iAUC) values for 180 min after each meal. Indexes of early-phase insulin secretion were assessed, and β-cell function was estimated by mathematical modeling. [iAUCglucose(180–360 min)] was significantly lower on Day BL than on Day FL (181 ± 43 vs. 472 ± 29 mmol·liter−1·min, P = 0.0005). The magnitude of the The second-meal phenomenon [iAUCglucose(180–360 min) on Day BL/Day FL] was 35 ± 9%. The peak levels of insulin and C-peptide were attained 45 min earlier after the second meal than after the first meal. iAUCglucose(180–360 min) correlated negatively with iAUCinsulin(180–210 min) ( r = −0.443, P = 0.0300), insulinogenic index ( r = −0.769, P < 0.0001), acute C-peptide response ( r = −0.596, P = 0.0021), and potentiation factor [i.e., potentiation effect on insulin secretion] ratio (180–360)/(0–20) ( r = −0.559, P = 0.0045), while correlated positively with free fatty acid level before lunch ( r = 0.679, P = 0.0003). The second-meal phenomenon was evident in patients with type 2 diabetes. Potentiation of the early-phase insulin response by a prior meal contributes to this phenomenon in type 2 diabetes.


1989 ◽  
Vol 257 (1) ◽  
pp. E43-E48 ◽  
Author(s):  
K. J. Mikines ◽  
F. Dela ◽  
B. Tronier ◽  
H. Galbo

Physical training decreases glucose-stimulated insulin secretion. To further explore the influence of the level of daily physical activity on beta-cell secretion, the effect of 7 days of bed rest was studied in six young, healthy men by sequential hyperglycemic clamp technique (7, 11, and 20 mM glucose, each step lasting 90 min). At 11 and 20 mM glucose, insulin concentrations in plasma were higher after (87 +/- 11 and 303 +/- 63 microU/ml) than before (63 +/- 5 and 251 +/- 50 microU/ml, P less than 0.05) bed rest. Also C-peptide levels were higher after bed rest than before during glucose stimulation. The responses of other hormones, metabolites, or electrolytes influencing beta-cell secretion were not influenced by bed rest. In spite of increased insulin levels after bed rest, glucose disposal at 20 mM of glucose was significantly lower after bed rest than before. It is concluded that bed rest for 7 days increases the glucose-stimulated insulin response, at least partly due to a beta-cell adaptation increasing glucose-stimulated insulin secretion. However, the insulin secretion does not increase adequately compared with the peripheral insulin resistance induced by bed rest.


2011 ◽  
Vol 300 (5) ◽  
pp. E817-E823 ◽  
Author(s):  
Alice S. Green ◽  
Antoni R. Macko ◽  
Paul J. Rozance ◽  
Dustin T. Yates ◽  
Xiaochuan Chen ◽  
...  

GSIS is often measured in the sheep fetus by a square-wave hyperglycemic clamp, but maximal β-cell responsiveness and effects of fetal number and sex difference have not been fully evaluated. We determined the dose-response curve for GSIS in fetal sheep (0.9 of gestation) by increasing plasma glucose from euglycemia in a stepwise fashion. The glucose-insulin response was best fit by curvilinear third-order polynomial equations for singletons ( y = 0.018 x3 − 0.26 x2 + 1.2 x − 0.64) and twins ( y = −0.012 x3 + 0.043 x2 + 0.40 x − 0.16). In singles, maximal insulin secretion was achieved at 3.4 ± 0.2 mmol/l glucose but began to plateau after 2.4 ± 0.2 mmol/l glucose (90% of maximum), whereas the maximum for twins was reached at 4.8 ± 0.4 mmol/l glucose. In twin ( n = 18) and singleton ( n = 49) fetuses, GSIS was determined with a square-wave hyperglycemic clamp >2.4 mmol/l glucose. Twins had a lower basal glucose concentration, and plasma insulin concentrations were 59 ( P < 0.01) and 43% ( P < 0.05) lower in twins than singletons during the euglycemic and hyperglycemic periods, respectively. The basal glucose/insulin ratio was approximately doubled in twins vs. singles ( P < 0.001), indicating greater insulin sensitivity. In a separate cohort of fetuses, twins ( n = 8) had lower body weight ( P < 0.05) and β-cell mass ( P < 0.01) than singleton fetuses ( n = 7) as a result of smaller pancreata ( P < 0.01) and a positive correlation ( P < 0.05) between insulin immunopositive area and fetal weight ( P < 0.05). No effects of sex difference on GSIS or β-cell mass were observed. These findings indicate that insulin secretion is less responsive to physiological glucose concentrations in twins, due in part to less β-cell mass.


2007 ◽  
Vol 292 (6) ◽  
pp. E1775-E1781 ◽  
Author(s):  
Kenneth Cusi ◽  
Sangeeta Kashyap ◽  
Amalia Gastaldelli ◽  
Mandeep Bajaj ◽  
Eugenio Cersosimo

Elevated plasma FFA cause β-cell lipotoxicity and impair insulin secretion in nondiabetic subjects predisposed to type 2 diabetes mellitus [T2DM; i.e., with a strong family history of T2DM (FH+)] but not in nondiabetic subjects without a family history of T2DM. To determine whether lowering plasma FFA with acipimox, an antilipolytic nicotinic acid derivative, may enhance insulin secretion, nine FH+ volunteers were admitted twice and received in random order either acipimox or placebo (double-blind) for 48 h. Plasma glucose/insulin/C-peptide concentrations were measured from 0800 to 2400. On day 3, insulin secretion rates (ISRs) were assessed during a +125 mg/dl hyperglycemic clamp. Acipimox reduced 48-h plasma FFA by 36% ( P < 0.001) and increased the plasma C-peptide relative to the plasma glucose concentration or ΔC-peptide/Δglucose AUC (+177%, P = 0.02), an index of improved β-cell function. Acipimox improved insulin sensitivity (M/I) 26.1 ± 5% ( P < 0.04). First- (+19 ± 6%, P = 0.1) and second-phase (+31 ± 6%, P = 0.05) ISRs during the hyperglycemic clamp also improved. This was particularly evident when examined relative to the prevailing insulin resistance [1/(M/I)], as both first- and second-phase ISR markedly increased by 29 ± 7 ( P < 0.05) and 41 ± 8% ( P = 0.02). There was an inverse correlation between fasting FFA and first-phase ISR ( r2 = 0.31, P < 0.02) and acute (2–4 min) glucose-induced insulin release after acipimox ( r2 =0.52, P < 0.04). In this proof-of-concept study in FH+ individuals predisposed to T2DM, a 48-h reduction of plasma FFA improves day-long meal and glucose-stimulated insulin secretion. These results provide additional evidence for the important role that plasma FFA play regarding insulin secretion in FH+ subjects predisposed to T2DM.


2007 ◽  
Vol 194 (3) ◽  
pp. 621-625 ◽  
Author(s):  
Hideyuki Takahashi ◽  
Yohei Kurose ◽  
Muneyuki Sakaida ◽  
Yoshihiro Suzuki ◽  
Shigeki Kobayashi ◽  
...  

The present study was conducted to investigate roles of ghrelin in glucose-induced insulin secretion in fasting- and meal-fed state in sheep. Castrated Suffolk rams were fed a maintenance diet of alfalfa hay cubes once a day. Hyperglycemic clamp (HGC) was carried out to examine glucose-induced insulin response from 48 to 53 h (fasting state) and from 3 to 8 h (meal-fed state) after feeding in Experiment 1 and 2 respectively. Total dose of 70 nmol/kg body weight of d-Lys3-GHRP6, a GH secretagogue receptor 1a (GHS-R1a) antagonist, was intravenously administered at 0, 60, and 120 min after the commencement of HGC. In the fasting state, the ghrelin antagonist significantly (P < 0.01) enhanced glucose-induced insulin secretion. In the meal-fed state, i.v. administration of synthetic ovine ghrelin (0.04 μ g/kg body weight per min during HGC) significantly (P < 0.05) enhanced glucose-induced insulin secretion. d-Lys3-GHRP6 treatment suppressed ghrelin-induced enhancement of the insulin secretion. In conclusion, ghrelin has an inhibitory and stimulatory role in glucose-induced insulin secretion via GHS-R1a in fasting- and meal-fed state respectively.


1993 ◽  
Vol 264 (3) ◽  
pp. E441-E449 ◽  
Author(s):  
E. Christiansen ◽  
H. B. Andersen ◽  
K. Rasmussen ◽  
N. J. Christensen ◽  
K. Olgaard ◽  
...  

beta-Cell function and glucose metabolism were studied in eight insulin-dependent diabetic recipients of combined segmental pancreas and kidney transplant with peripheral insulin delivery (Px), in eight nondiabetic kidney-transplant individuals (Kx), and in eight normal subjects (Ns) after three consecutive mixed meals. All subjects had normal fasting plasma glucose, but increased basal levels of C-peptide were demonstrated in the transplant groups (P < 0.05 relative to Ns). Postprandial hyperglycemia was increased 14% in Kx and 32% in Px (P < 0.05), whereas compared with Ns postprandial C-peptide levels were increased three- and twofold, respectively, in Kx and Px (P < 0.05). Compared with Ns basal insulin secretion rate (combined model) was increased 2-fold in Kx and 1.4-fold in Px (P < 0.05). Maximal insulin secretion rate was reduced 25% in Px compared with Kx (P < 0.05) but not different from that of Ns (P NS). Also, maximal insulin secretion rate occurred later in Px than in controls (Tmax: Px 50 min, Kx 30 min, and Ns 32 min; P < 0.05). The total integrated insulin secretion was increased 1.4-fold in Px compared with Ns (P < 0.05) but decreased 1.4-fold compared with Kx (P < 0.05). Fasting and postprandial proinsulin-to-C-peptide molar ratios were inappropriately increased in Px compared with Kx and Ns. Basal hepatic glucose production was increased 43% in Px and 33% in Kx compared with Ns (P < 0.05). Postprandial total systemic glucose appearance was similar in all three groups, whereas peripheral glucose disposal was 15% reduced in Px (P < 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document