Stability of GLUT-1 and GLUT-4 expression in perfused rat muscle stimulated by insulin and exercise

1995 ◽  
Vol 78 (1) ◽  
pp. 46-52 ◽  
Author(s):  
X. X. Han ◽  
A. Handberg ◽  
L. N. Petersen ◽  
T. Ploug ◽  
H. Galbo

In vivo exercise and insulin may change the concentrations of GLUT-4 protein and mRNA in muscle. We studied in vitro whether adaptations in glucose transporter expression are initiated during a single prolonged period of contractions or during insulin stimulation. Rat hindquarters were perfused at 7 mM glucose for 2 h with or without insulin (> 20,000 microU/ml) while the sciatic nerve of one leg was stimulated to produce repeated tetanic contractions. During electrical stimulation, contraction force decreased 93 +/- 1% (SE; n = 26) and muscle glycogen was markedly diminished (P < 0.05). Both contractions and insulin markedly increased glucose transport and uptake (P < 0.05). At the end of contractions, glycogen was higher in the presence of than in the absence of insulin (24 +/- 4 vs. 14 +/- 3 mumol/g for the soleus and 13 +/- 2 vs. 8 +/- 1 mumol/g for the red gastrocnemius, respectively; P < 0.05). In nonstimulated muscle, glucose transporter mRNA and protein concentrations were higher in the soleus than in the white gastrocnemius (GLUT-4 mRNA 184 +/- 18 vs. 131 +/- 36 arbitrary units; GLUT-1 mRNA 173 +/- 29 vs. 114 +/- 26 arbitrary units; GLUT-4 protein 0.96 +/- 0.09 vs. 0.46 +/- 0.03 arbitrary units; GLUT-1 protein 0.41 +/- 0.08 vs. 0.19 +/- 0.05 arbitrary units, respectively; P < 0.05). These concentrations were not changed by contractions or insulin. In conclusion, GLUT-1 and GLUT-4 mRNA and protein levels are higher in slow-twitch oxidative than in fast-twitch glycolytic fibers.(ABSTRACT TRUNCATED AT 250 WORDS)

1990 ◽  
Vol 259 (6) ◽  
pp. E778-E786 ◽  
Author(s):  
T. Ploug ◽  
B. M. Stallknecht ◽  
O. Pedersen ◽  
B. B. Kahn ◽  
T. Ohkuwa ◽  
...  

The effect of 10 wk endurance swim training on 3-O-methylglucose (3-MG) uptake (at 40 mM 3-MG) in skeletal muscle was studied in the perfused rat hindquarter. Training resulted in an increase of approximately 33% for maximum insulin-stimulated 3-MG transport in fast-twitch red fibers and an increase of approximately 33% for contraction-stimulated transport in slow-twitch red fibers compared with nonexercised sedentary muscle. A fully additive effect of insulin and contractions was observed both in trained and untrained muscle. Compared with transport in control rats subjected to an almost exhaustive single exercise session the day before experiment both maximum insulin- and contraction-stimulated transport rates were increased in all muscle types in trained rats. Accordingly, the increased glucose transport capacity in trained muscle was not due to a residual effect of the last training session. Half-times for reversal of contraction-induced glucose transport were similar in trained and untrained muscles. The concentrations of mRNA for GLUT-1 (the erythrocyte-brain-Hep G2 glucose transporter) and GLUT-4 (the adipocyte-muscle glucose transporter) were increased approximately twofold by training in fast-twitch red muscle fibers. In parallel to this, Western blot demonstrated a approximately 47% increase in GLUT-1 protein and a approximately 31% increase in GLUT-4 protein. This indicates that the increases in maximum velocity for 3-MG transport in trained muscle is due to an increased number of glucose transporters.


2005 ◽  
Vol 17 (8) ◽  
pp. 775 ◽  
Author(s):  
Hiemke M. Knijn ◽  
Christine Wrenzycki ◽  
Peter J. M. Hendriksen ◽  
Peter L. A. M. Vos ◽  
Elly C. Zeinstra ◽  
...  

Bovine blastocysts produced in vitro differ substantially from their in vivo-derived counterparts with regard to glucose metabolism, level of apoptosis and mRNA expression patterns. Maternal embryonic genomic transition is a critical period in which these changes could be induced. The goals of the present study were twofold: (1) to identify the critical period of culture during which the differences in expression of gene transcripts involved in glucose metabolism are induced; and (2) to identify gene transcripts involved in apoptosis that are differentially expressed in in vitro- and in vivo-produced blastocysts. Relative abundances of transcripts for the glucose transporters Glut-1, Glut-3, Glut-4 and Glut-8, and transcripts involved in the apoptotic cascade, including BAX, BCL-XL, XIAP and HSP 70.1, were analysed by a semiquantitative reverse transcription–polymerase chain reaction assay in single blastocysts produced in vitro or in vivo for specific time intervals, that is, before or after maternal embryonic transition. Whether the culture environment was in vitro or in vivo affected the expression of glucose transporter transcripts Glut-3, Glut-4 and Glut-8. However, the critical period during culture responsible for these changes, before or after maternal embryonic transition, could not be determined. With the exception of XIAP, no effects of culture system on the mRNA expression patterns of BAX, BCL-XL and HSP 70.1 could be observed. These data show that expression of XIAP transcripts in expanded blastocysts is affected by in vitro culture. These findings add to the list of bovine genes aberrantly expressed in culture conditions, but do not support the hypothesis that maternal embryonic transition is critical in inducing the aberrations in gene expression patterns studied here.


1999 ◽  
Vol 160 (3) ◽  
pp. 443-452 ◽  
Author(s):  
K Ogura ◽  
M Sakata ◽  
M Yamaguchi ◽  
H Kurachi ◽  
Y Murata

Facilitative glucose transporter-1 (GLUT1) is expressed abundantly and has an important role in glucose transfer in placentas. However, little is known about the regulation of GLUT1 expression in placental cells. We studied the changes in placental GLUT1 levels in relation to changes in glucose concentration in vitro and in vivo. In in vitro experiments, dispersed mouse placental cells were incubated under control (5.5 mM) and moderately high (22 mM) glucose concentrations, and 2-deoxyglucose uptake into cells was studied on days 1-5 of culture. After 4 days of incubation under both conditions, GLUT1 mRNA and proten levels were examined by Northern and immunoblot analyses. Treatment of cells with 22 mM glucose resulted in a significant decrease in 2-deoxyglucose uptake compared with control, from day 2 to day 5 of culture. Moreover, GLUT1 mRNA and protein levels on day 4 of culture were significantly reduced in cells incubated with 22 mM glucose compared with control. Next, we rendered mice diabetic by administering 200 micrograms/g body weight streptozotocin (STZ) on day 8 of pregnancy. Animals were killed on day 12 of pregnancy and placental tissues were obtained. [3H]Cytochalasin B binding study was carried out to assess total GLUTs, and GLUT1 mRNA and protein were measured as above. [3H]Cytochalasin B binding sites in placentas from STZ-treated mice were significantly less than those in control mice. Northern and immunoblot analyses revealed a significant decrease in GLUT1 mRNA and protein levels in diabetic mice compared with the controls. These findings suggest that the glucose concentration may regulate the expression of placental GLUT1.


1999 ◽  
Vol 340 (3) ◽  
pp. 657-669 ◽  
Author(s):  
Rosa I. VINER ◽  
Deborah A. FERRINGTON ◽  
Todd D. WILLIAMS ◽  
Diana J. BIGELOW ◽  
Christian SCHÖNEICH

The accumulation of covalently modified proteins is an important hallmark of biological aging, but relatively few studies have addressed the detailed molecular-chemical changes and processes responsible for the modification of specific protein targets. Recently, Narayanan et al. [Narayanan, Jones, Xu and Yu (1996) Am. J. Physiol. 271, C1032-C1040] reported that the effects of aging on skeletal-muscle function are muscle-specific, with a significant age-dependent change in ATP-supported Ca2+-uptake activity for slow-twitch but not for fast-twitch muscle. Here we have characterized in detail the age-dependent functional and chemical modifications of the rat skeletal-muscle sarcoplasmic-reticulum (SR) Ca2+-ATPase isoforms SERCA1 and SERCA2a from fast-twitch and slow-twitch muscle respectively. We find a significant age-dependent loss in the Ca2+-ATPase activity (26% relative to Ca2+-ATPase content) and Ca2+-uptake rate specifically in SR isolated from predominantly slow-twitch, but not from fast-twitch, muscles. Western immunoblotting and amino acid analysis demonstrate that, selectively, the SERCA2a isoform progressively accumulates a significant amount of nitrotyrosine with age (≈ 3.5±0.7 mol/mol of SR Ca2+-ATPase). Both Ca2+-ATPase isoforms suffer an age-dependent loss of reduced cysteine which is, however, functionally insignificant. In vitro, the incubation of fast- and slow-twitch muscle SR with peroxynitrite (ONOO-) (but not NO/O2) results in the selective nitration only of the SERCA2a, suggesting that ONOO- may be the source of the nitrating agent in vivo. A correlation of the SR Ca2+-ATPase activity and covalent protein modifications in vitro and in vivo suggests that tyrosine nitration may affect the Ca2+-ATPase activity. By means of partial and complete proteolytic digestion of purified SERCA2a with trypsin or Staphylococcus aureus V8 protease, followed by Western-blot, amino acid and HPLC-electrospray-MS (ESI-MS) analysis, we localized a large part of the age-dependent tyrosine nitration to the sequence Tyr294-Tyr295 in the M4-M8 transmembrane domain of the SERCA2a, close to sites essential for Ca2+ translocation.


2000 ◽  
Vol 279 (3) ◽  
pp. E529-E538 ◽  
Author(s):  
M. Gaster ◽  
A. Handberg ◽  
H. Beck-Nielsen ◽  
H. D. Schrøder

The present study was initiated to investigate GLUT-1 through -5 expression in developing and mature human skeletal muscle. To bypass the problems inherent in techniques using tissue homogenates, we applied an immunocytochemical approach, employing the sensitive enhanced tyramide signal amplification (TSA) technique to detect the localization of glucose transporter expression in human skeletal muscle. We found expression of GLUT-1, GLUT-3, and GLUT-4 in developing human muscle fibers showing a distinct expression pattern. 1) GLUT-1 is expressed in human skeletal muscle cells during gestation, but its expression is markedly reduced around birth and is further reduced to undetectable levels within the first year of life; 2) GLUT-3 protein expression appears at 18 wk of gestation and disappears after birth; and 3) GLUT-4 protein is diffusely expressed in muscle cells throughout gestation, whereas after birth, the characteristic subcellular localization is as seen in adult muscle fibers. Our results show that GLUT-1, GLUT-3, and GLUT-4 seem to be of importance during muscle fiber growth and development. GLUT-5 protein was undetectable in fetal and adult skeletal muscle fibers. In adult muscle fibers, only GLUT-4 was expressed at significant levels. GLUT-1 immunoreactivity was below the detection limit in muscle fibers, indicating that this glucose transporter is of minor importance for muscle glucose supply. Thus we hypothesize that GLUT-4 also mediates basal glucose transport in muscle fibers, possibly through constant exposure to tonal contraction and basal insulin levels.


1996 ◽  
Vol 270 (6) ◽  
pp. R1355-R1360
Author(s):  
E. Johannsson ◽  
O. Waerhaug ◽  
A. Bonen

We determined whether the twitch-velocity phenotype or the metabolic phenotype of a muscle influences the content of GLUT-4 and GLUT-1 proteins. The soleus (Sol) and extensor digitorum longus (EDL) muscles were cross-reinnervated (X-Sol, X-EDL). After 3 mo the X-EDL had become enriched in slow-twitch oxidative (SO) fibers (70.5% SO) compared with its control (3.8% SO), whereas the X-Sol became enriched in fast-twitch oxidative-glycolytic (FOG) fibers (78.6% FOG) compared with its control (10% FOG). Thus the twitch phenotype of X-Sol shifted to fast-twitch muscle, whereas X-EDL shifted to a slow-twitch muscle. In the X-EDL, the oxidative nature of the X-EDL was increased to 97% oxidative fibers compared with 43% oxidative fibers in the normal EDL. In the Sol the oxidative nature of the X-Sol was retained at 100%. GLUT-4 content was increased 1.6-fold in the X-EDL (P < 0.05) but was not changed in the X-Sol (P > 0.05). GLUT-1 content was increased fourfold in X-EDL but was not altered in the X-Sol. We conclude that GLUT-4 and GLUT-1 content in muscle is related to the oxidative phenotype of the muscle rather than the twitch-velocity phenotype.


2015 ◽  
Vol 309 (2) ◽  
pp. R128-R137 ◽  
Author(s):  
Hiroaki Eshima ◽  
David C. Poole ◽  
Yutaka Kano

In Type 1 diabetes, skeletal muscle resting intracellular Ca2+ concentration ([Ca2+]i) homeostasis is impaired following muscle contractions. It is unclear to what degree this behavior is contingent upon fiber type and muscle oxygenation conditions. We tested the hypotheses that: 1) the rise in resting [Ca2+]i evident in diabetic rat slow-twitch (type I) muscle would be exacerbated in fast-twitch (type II) muscle following contraction; and 2) these elevated [Ca2+]i levels would relate to derangement of microvascular partial pressure of oxygen (PmvO2) rather than sarcoplasmic reticulum dysfunction per se. Adult male Wistar rats were divided randomly into diabetic (DIA: streptozotocin ip) and healthy (CONT) groups. Four weeks later extensor digitorum longus (EDL, predominately type II fibers) and soleus (SOL, predominately type I fibers) muscle contractions were elicited by continuous electrical stimulation (120 s, 100 Hz). Ca2+ imaging was achieved using fura 2-AM in vivo (i.e., circulation intact). DIA increased fatigability in EDL ( P < 0.05) but not SOL. In recovery, SOL [Ca2+]i either returned to its resting baseline within 150 s (CONT 1.00 ± 0.02 at 600 s) or was not elevated in recovery at all (DIA 1.03 ± 0.02 at 600 s, P > 0.05). In recovery, EDL CONT [Ca2+]i also decreased to values not different from baseline (1.06 ± 0.01, P > 0.05) at 600 s. In marked contrast, EDL DIA [Ca2+]i remained elevated for the entire recovery period (i.e., 1.23 ± 0.03 at 600 s, P < 0.05). The inability of [Ca2+]i to return to baseline in EDL DIA was not associated with any reduction of SR Ca2+-ATPase (SERCA) 1 or SERCA2 protein levels (both increased 30–40%, P < 0.05). However, PmvO2 recovery kinetics were markedly slowed in EDL such that mean PmvO2 was substantially depressed (CONT 27.9 ± 2.0 vs. DIA 18.4 ± 2.0 Torr, P < 0.05), and this behavior was associated with the elevated [Ca2+]i. In contrast, this was not the case for SOL ( P > 0.05) in that neither [Ca2+]i nor PmvO2 were deranged in recovery with DIA. In conclusion, recovery of [Ca2+]i homeostasis is impaired in diabetic rat fast-twitch but not slow-twitch muscle in concert with reduced PmvO2 pressures.


1993 ◽  
Vol 268 (20) ◽  
pp. 14998-15003
Author(s):  
A. Castelló ◽  
J. Cadefau ◽  
R. Cussó ◽  
X. Testar ◽  
J.E. Hesketh ◽  
...  

1997 ◽  
Vol 272 (5) ◽  
pp. E864-E869 ◽  
Author(s):  
G. J. Etgen ◽  
J. Jensen ◽  
C. M. Wilson ◽  
D. G. Hunt ◽  
S. W. Cushman ◽  
...  

The effects of exercise training on cell surface GLUT-4 in skeletal muscle of the obese (fa/fa) Zucker rat were investigated using the impermeant glucose transporter photoaffinity reagent 2-N-4-(1-azi-2,2,2-trifluoroethyl)-benzoyl-1,3-bis- (D-mannos-4-yloxy)-2-propylamine (ATB-BMPA). In the absence of insulin, 3-O-methyl-D-glucose transport activity was no different in either fast-twitch (epitrochlearis) or slow-twitch (soleus) muscles of trained and sedentary obese rats. Likewise, basal ATB-BMPA-labeled GLUT-4 was not altered in these muscles with training. In contrast, the trained group exhibited significantly greater insulin-stimulated (2 mU/ml) glucose transport activity in epitrochlearis muscles than the sedentary group (0.53 +/- 0.03 vs. 0.18 +/- 0.03 mumol.g-1 x 10 min-1 for trained and sedentary, respectively), which was paralleled by a significant enhancement of insulin-stimulated cell surface GLUT-4 (5.33 +/- 0.20 vs. 1.57 +/- 0.14 disintegrations.min-1.mg-1 for trained and sedentary, respectively). Exercise training, however, did not alter insulin-stimulated glucose transport activity or cell surface GLUT-4 in soleus muscles. Finally, exercise training did not alter the ability of muscle contraction to elevate glucose transport activity or cell surface GLUT-4 in either epitrochlearis or soleus muscles of the obese rat. These results indicate that training improves insulin-stimulated glucose transport in muscle of the obese Zucker rat by increasing GLUT-4 content and by altering the normal intracellular distribution of these transporters such that they are now capable of migrating to the cell surface in response to the insulin stimulus.


Sign in / Sign up

Export Citation Format

Share Document