scholarly journals Role of IL-6 in systemic angiogenesis of the lung

2005 ◽  
Vol 99 (3) ◽  
pp. 861-866 ◽  
Author(s):  
Jessica Y. McClintock ◽  
Elizabeth M. Wagner

The multifunctional cytokine interleukin (IL)-6 has been shown to modulate inflammation and angiogenesis. In a mouse model of lung angiogenesis induced by chronic left pulmonary artery ligation (LPAL), we previously showed increased expression of IL-6 mRNA in lung homogenates 4 h after the onset of pulmonary ischemia ( 31 ). To determine whether IL-6 influences both new vessel growth and inflammatory cell influx, we studied wild-type (WT) and IL-6-deficient C57Bl/6J (KO) mice after LPAL (4 h and 1, 7, 14 days). We measured IL-6 protein of the lung by ELISA, the lavage cell profile of the left lung, and new systemic vessel growth with radiolabeled microspheres (14 days after LPAL) in WT and KO mice. We confirmed a 2.4-fold increase in IL-6 protein in the left lung of WT mice compared with right lung 4 h after LPAL. A significant increase in lavaged neutrophils (7.5% of total cells) was observed only in WT mice 4 h after LPAL. New vessel growth was significantly attenuated in KO relative to WT (0.7 vs. 1.9% cardiac output). In an additional series, treatment of WT mice with anti-neutrophil antibody demonstrated a reduction in lavaged neutrophils 4 h after LPAL; however, IL-6 protein remained elevated and neovascularization to the left lung (2.3% cardiac output) was not altered. These results demonstrate that IL-6 plays an important modulatory role in lung angiogenesis, but the changes are not dependent on trapped neutrophils.

2006 ◽  
Vol 100 (2) ◽  
pp. 587-593 ◽  
Author(s):  
Elizabeth M. Wagner ◽  
Irina Petrache ◽  
Brian Schofield ◽  
Wayne Mitzner

Cellular remodeling during angiogenesis in the lung is poorly described. Furthermore, it is the systemic vasculature of the lung and surrounding the lung that is proangiogenic when the pulmonary circulation becomes impaired. In a mouse model of chronic pulmonary thromboembolism, after left pulmonary artery ligation (LPAL), the intercostal vasculature, in proximity to the ischemic lung, proliferates and invades the lung ( 12 ). In the present study, we performed a detailed investigation of the kinetics of remodeling using histological sections of the left lung of C57Bl/6J mice after LPAL (4 h to 20 days) or after sham surgery. New vessels were seen within the thickened visceral pleura 4 days after LPAL predominantly in the upper portion of the left lung. Connections between new vessels within the pleura and pulmonary capillaries were clearly discerned by 7 days after LPAL. The visceral pleura and the lung parenchyma showed intense tissue remodeling, as evidenced by markedly elevated levels of both proliferating cell nuclear antigen and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling positive cells. Rapidly dividing cells were predominantly macrophages and type II pneumocytes. The increased apoptotic activity was further quantified by caspase-3 activity, which showed a sixfold increase relative to naive lungs, by 24 h after LPAL. Because sham surgeries had little effect on measured parameters, we conclude that both thoracic wound healing and pulmonary ischemia are required for systemic neovascularization.


2008 ◽  
Vol 104 (5) ◽  
pp. 1470-1475 ◽  
Author(s):  
Adlah Sukkar ◽  
John Jenkins ◽  
Jesús Sánchez ◽  
Elizabeth M. Wagner

Under conditions of chronic pulmonary ischemia, the bronchial circulation undergoes massive proliferation. However, little is known regarding the mechanisms that promote neovascularization. An expanding body of literature implicates the glutamic acid-leucine-arginine (ELR+) CXC chemokines and their G protein-coupled receptor, CXCR2, as key proangiogenic components in the lung. We used a rat model of chronic pulmonary ischemia induced by left pulmonary artery ligation (LPAL) to study bronchial angiogenesis. Using a methacrylate mixture, we cast the systemic vasculature of the rat lung at weekly intervals after LPAL. Twenty-one days after LPAL, numerous large, tortuous bronchial arteries were observed surrounding the left main bronchus that penetrated the left lung parenchyma. In stark contrast, the right lung was essentially devoid of vessels. We quantified bronchial neovascularization using 15-μm radiolabeled microspheres to measure systemic blood flow to the left lung ( n = 12 rats). Results showed that by 21 days after LPAL, bronchial blood flow to the ischemic left lung had increased >10-fold compared with controls 2 days after LPAL ( P < 0.01). Focusing on the predominant rat CXC chemokine that signals through CXCR2, we measured increased levels of cytokine-induced neutrophil chemoattractant-3 protein expression in left lung homogenates early (4 and 24 h; n = 10 rats) after LPAL relative to paired right lung controls ( P < 0.01). Treatment with a neutralizing antibody to CXCR2 resulted in a significant decrease in neovascularization 21 days after LPAL ( n = 9 rats; P < 0.01). Our results confirm the time course of bronchial angiogenesis in the rat and suggest the importance of CXC chemokines in promoting systemic neovascularization in the lung.


2010 ◽  
Vol 299 (4) ◽  
pp. L535-L541 ◽  
Author(s):  
Julie Nijmeh ◽  
Aigul Moldobaeva ◽  
Elizabeth M. Wagner

Pulmonary artery obstruction and subsequent lung ischemia have been shown to induce systemic angiogenesis despite preservation of normoxia. The underlying mechanisms, however, remain poorly understood. In a mouse model of lung ischemia induced by left pulmonary artery ligation (LPAL), we showed previously, the formation of a new systemic vasculature to the ischemic lung. We hypothesize that LPAL in the mouse increases reactive oxygen species (ROS) production, and these molecules play an initiating role in subsequent lung neovascularization. We used oxidant-sensitive dyes (DHE and H2DCF-DA) to quantify ROS and measured the antioxidant-reduced glutathione (GSH) and its oxidized form (GSSG) as indicators of ROS levels after LPAL. The magnitude of systemic neovascularization was determined by measuring systemic blood flow to the left lung with radiolabeled microspheres 14 days after LPAL. An increase in ROS was observed early (30 min: 55% increase in H2DCF-DA) after LPAL, with a return to baseline by 24 h. GSH/GSSG was decreased (∼50%) 4 h after LPAL, suggesting earlier ROS upregulation. Mice treated with the antioxidant N-acetylcysteine showed attenuated angiogenesis (62% of wild-type LPAL), and mice lacking Nrf2, a transcription factor important for antioxidant synthesis, resulted in increased neovascularization (207% of wild-type LPAL). Overall, GSH/GSSG was inversely associated with the magnitude of neovascularization. These results demonstrate that LPAL induces an early and transient ROS upregulation, and ROS appear to play a role in promoting ischemia-induced angiogenesis.


2011 ◽  
Vol 301 (5) ◽  
pp. L782-L788 ◽  
Author(s):  
Lindsey Eldridge ◽  
Aigul Moldobaeva ◽  
Elizabeth M. Wagner

Hyaluronan (HA), a glycosaminoglycan critical to the lung extracellular matrix, has been shown to dissociate into low-molecular-weight (LMW) HA fragments following exposure to injurious stimuli. In the present study we questioned whether lung HA changed during ischemia and whether changes had an effect on subsequent angiogenesis. After left pulmonary artery ligation (LPAL) in mice, we analyzed left lung homogenates immediately after the onset of ischemia (0 h) and intermittently for 14 days. The relative expression of HA synthase (HAS)1, HAS2, and HAS3 was determined by real-time RT-PCR, total HA in the lung was measured by an ELISA-like assay, gel electrophoresis was performed to determine changes in HA size distribution, and the activity of hyaluronidases was determined by zymography. A 50% increase in total HA was measured 16 h after the onset of ischemia and remained elevated for up to 7 days. Furthermore, a fourfold increase in LMW HA fragments (495–30 kDa) was observed by 4 h after LPAL. Both HAS1 and HAS2 showed increased expression 4–16 h after LPAL, yet no changes were seen in hyaluronidase activity. These results suggest that both HA fragmentation and activation of HA synthesis contribute to increased HA levels during lung ischemia. Delivery of LMW HA fragments in an in vitro tube formation assay or directly to the ischemic mouse lung in vivo both resulted in increased angiogenesis. We conclude that ischemic injury results in matrix fragmentation, which leads to stimulation of neovascularization.


2007 ◽  
Vol 293 (1) ◽  
pp. L254-L258 ◽  
Author(s):  
Michael J. Fields ◽  
John M. Bishai ◽  
Wayne Mitzner ◽  
Elizabeth M. Wagner

Pulmonary ischemia resulting from chronic pulmonary embolism leads to proliferation of the systemic circulation within and surrounding the lung. However, it is not clear how well alveolar tissue is sustained during the time of complete pulmonary ischemia. In the present study, we investigated how pulmonary ischemia after left pulmonary artery ligation (LPAL) would alter lung mechanical properties and morphology. In this established mouse model of lung angiogenesis after chronic LPAL ( 10 ), we evaluated lung function and structure before (3 days) and after (14 days) a functional systemic circulation to the left lung is established. Age-matched naïve and sham-operated C57Bl/6 mice and mice undergoing chronic LPAL were studied. Left and right lung pressure-volume relationships were determined. Next, lungs were inflated in situ with warmed agarose (25–30 cmH2O) and fixed, and mean chord lengths (MCL) of histological sections were quantified. MCL of naïve mice averaged 43.9 ± 1.8 μm. No significant changes in MCL were observed at either time point after LPAL. Left lung volumes and specific compliances were significantly reduced 3 days after LPAL. However, by 14 days after LPAL, lung pressure-volume relationships were not different from controls. These results suggest that severe pulmonary ischemia causes changes in lung mechanics early after LPAL that are reversed by the time a new systemic vasculature is known to perfuse pulmonary capillaries. The LPAL model thus affords a unique opportunity to study lung functional responses to tissue ischemia and subsequent recovery.


2011 ◽  
Vol 110 (2) ◽  
pp. 538-544 ◽  
Author(s):  
Elizabeth M. Wagner ◽  
John Jenkins ◽  
Maria Grazia Perino ◽  
Adlah Sukkar ◽  
Wayne Mitzner

Bronchial vascular angiogenesis takes place in a variety of lung inflammatory conditions such as asthma, cystic fibrosis, lung cancer, and chronic pulmonary thromboembolic disease. However, it is unclear whether neovascularization is predominantly appropriate and preserves lung tissue or whether it contributes further to lung pathology through edema formation and inflammation. In the present study we examined airway and lung parenchymal function 14 days after left pulmonary artery ligation. In rats as well as higher mammals, severe pulmonary ischemia results in bronchial vascular proliferation. Using labeled microspheres, we demonstrated an 18-fold increase in systemic blood flow to the ischemic left lung. Additionally, vascular remodeling extended to the tracheal venules, which showed an average 28% increase in venular diameter. Despite this increase in vascularity, airways resistance was not altered nor was methacholine responsiveness. Since these measurements include the entire lung, we suggest that the normal right lung, which represented 78% of the total lung, obscured the ability to detect a change. When functional indexes such as diffusing capacity, in situ lung volume, and vascular permeability of the left lung could be separated from right lung, significant changes were observed. Thus when comparing average left lung values of rats 14 days after left pulmonary artery ligation to left lungs of rats undergoing sham surgery, diffusing capacity of the left lung decreased by 72%, left lung volume decreased by 38%, and the vascular permeability to protein increased by 58%. No significant differences in inflammatory cell recruitment were observed, suggesting that acute ischemic inflammation had resolved. We conclude that despite the preservation of lung tissue, the proliferating bronchial neovasculature may contribute to a sustained decrement in pulmonary function.


2016 ◽  
Vol 19 (4) ◽  
pp. 187 ◽  
Author(s):  
Dohun Kim ◽  
Si-Wook Kim ◽  
Hong-Ju Shin ◽  
Jong-Myeon Hong ◽  
Ji Hyuk Lee ◽  
...  

A 10-day-old boy was transferred to our hospital due to tachypnea. Patent ductus arteriosus (PDA), 4.8 mm in diameter, with small ASD was diagnosed on echocardiography. Surgical ligation of the ductus was performed after failure of three cycles of ibuprofen. However, the ductus remained open on routine postoperative echocardiography on the second postoperative day, and chest CT revealed inadvertent ligation of the left pulmonary artery (LPA) rather than the PDA. Emergent operation successfully reopened the clipped LPA and ligated the ductus on the same (second postoperative) day.<br />Mechanical ventilator support was weaned on postoperative day 21, and the baby was discharged on postoperative day 47 with a normal left lung shadow.


1992 ◽  
Vol 73 (6) ◽  
pp. 2448-2451 ◽  
Author(s):  
J. T. McBride ◽  
K. K. Kirchner ◽  
G. Russ ◽  
J. Finkelstein

To study the influence of blood flow on postpneumonectomy lung growth, we banded the left caudal lobe pulmonary artery of eight ferrets in such a way that blood flow to the caudal lobe did not increase when the right lung was excised 1 wk later. The fraction of the cardiac output received by the right lung before pneumonectomy was therefore directed entirely to the left cranial lobe. Three weeks after pneumonectomy the weight, volume, and protein and DNA contents of the two lobes of the left lung were measured and compared with those of five unoperated animals and eight animals after right pneumonectomy alone. Although its perfusion did not increase after pneumonectomy, the left caudal lobe of banded animals participated in compensatory growth, increasing in weight and protein and DNA contents. Although the cranial lobe of banded animals received 25% more of the cardiac output than the same lobe in pneumonectomized animals, cranial lobe volume and protein and DNA contents in the two groups were similar. Caudal lobes were smaller in banded than in simple pneumonectomized animals and tended to contain less protein, whereas the cranial lobes tended to be heavier. We conclude that increased pulmonary perfusion is not necessary for compensatory lung growth in adult ferrets, but it may modify this response.


1988 ◽  
Vol 65 (3) ◽  
pp. 1131-1139 ◽  
Author(s):  
C. H. Wu ◽  
D. C. Lindsey ◽  
D. L. Traber ◽  
C. E. Cross ◽  
D. N. Herndon ◽  
...  

Distribution of bronchial blood flow was measured in unanesthetized sheep by the use of two modifications of the microsphere reference sample technique that correct for peripheral shunting of microspheres: 1) A double microsphere method in which simultaneous left and right atrial injections of 15-microns microspheres tagged with different isotopes allowed measurement of both pulmonary blood flow and shunt-corrected bronchial blood flow, and 2) a pulmonary arterial occlusion method in which left atrial injection and transient occlusion of the left pulmonary artery prevented delivery to the lung of microspheres shunted through the peripheral circulation and allowed systemic blood flow to the left lung to be measured. Both methods can be performed in unanesthetized sheep. The pulmonary arterial occlusion method is less costly and requires fewer calculations. The double microsphere method requires less surgical preparation and allows measurement without perturbation of pulmonary hemodynamics. There was no statistically significant difference between bronchial blood flow measured with the two methods. However, total bronchial blood flow measured during pulmonary arterial occlusion (1.52 +/- 0.98% of cardiac output, n = 9) was slightly higher than that measured with the double microsphere method (1.39 +/- 0.88% of cardiac output, n = 9). In another series of experiments in which sequential measurements of bronchial blood flow were made, there was a significant increase of 15% in left lung bronchial blood flow during the first minute of occlusion of the left pulmonary artery. Thus pulmonary arterial occlusion should be performed 5 s after microsphere injection as originally described by Baile et al. (1).(ABSTRACT TRUNCATED AT 250 WORDS)


1992 ◽  
Vol 67 (01) ◽  
pp. 111-116 ◽  
Author(s):  
Marcel Levi ◽  
Jan Paul de Boer ◽  
Dorina Roem ◽  
Jan Wouter ten Cate ◽  
C Erik Hack

SummaryInfusion of desamino-d-arginine vasopressin (DDAVP) results in an increase in plasma plasminogen activator activity. Whether this increase results in the generation of plasmin in vivo has never been established.A novel sensitive radioimmunoassay (RIA) for the measurement of the complex between plasmin and its main inhibitor α2 antiplasmin (PAP complex) was developed using monoclonal antibodies preferentially reacting with complexed and inactivated α2-antiplasmin and monoclonal antibodies against plasmin. The assay was validated in healthy volunteers and in patients with an activated fibrinolytic system.Infusion of DDAVP in a randomized placebo controlled crossover study resulted in all volunteers in a 6.6-fold increase in PAP complex, which was maximal between 15 and 30 min after the start of the infusion. Hereafter, plasma levels of PAP complex decreased with an apparent half-life of disappearance of about 120 min. Infusion of DDAVP did not induce generation of thrombin, as measured by plasma levels of prothrombin fragment F1+2 and thrombin-antithrombin III (TAT) complex.We conclude that the increase in plasminogen activator activity upon the infusion of DDAVP results in the in vivo generation of plasmin, in the absence of coagulation activation. Studying the DDAVP induced increase in PAP complex of patients with thromboembolic disease and a defective plasminogen activator response upon DDAVP may provide more insight into the role of the fibrinolytic system in the pathogenesis of thrombosis.


Sign in / Sign up

Export Citation Format

Share Document