Posttranslational modifications in histones underlie heat acclimation-mediated cytoprotective memory

2010 ◽  
Vol 109 (5) ◽  
pp. 1552-1561 ◽  
Author(s):  
Anna Tetievsky ◽  
Michal Horowitz

We have demonstrated that heat acclimation (AC) causes selective, long-lasting, transcriptional changes in cytoprotective and chromatin remodeling-associated genes, which maintain their AC transcriptome profile, despite the loss of the AC phenotype (Tetievsky et al. Physiol Genomics 34: 78–87, 2008). We postulated that AC memory involves upstream epigenetic information, which predisposes to rapid reacclimation (ReAC) and cytoprotective memory. Here we tested the hypothesis that posttranslational histone modifications are linked to this process. Rats subjected to AC (34°C for 2 or 30 days), deacclimation (DeAC; 24°C, 30 days), and ReAC (34°C, 2 days), and untreated controls were used. Histone H4 lysine acetylation and histone H3 acetylation and phosphorylation in the heat shock element (HSE) of the promoters of heat shock protein-70 ( hsp70) and -90 ( hsp90) genes were examined. Histone acetyltransferase recruitment of TIP60 (60-kDa histone acetyltransferase-interactive protein), the catalytic subunit of NuH4, was used to validate acetylation. Heat shock factor-1 (HSF-1)-HSE binding to the hsp70 and hsp90 genes was measured to confirm HSF-1 binding to euchromatin. Our results indicate that, while histone H3Ser10 phosphorylation occurred during the AC 2-day phase, AC constitutively elevated histone H4 acetylation in the HSE of hsp70 and hsp90 promoters. HSF-1-HSE binding was detected in the hsp70 gen e throughout AC-DeAC-ReAC. The hsp90 gene lacked HSF-1 binding during DeAC, but resumed a high binding level upon ReAC. HSP-90 is a critical cytoprotective protein, and the HSF-1- hsp90 binding profile matched levels of this protein. We conclude that, while early histone H3 phosphorylation is probably required for subsequent histone H4 acetylation, the constitutively acetylated histone H4 and the preserved euchromatin state throughout AC-DeAC-ReAC predispose to rapid cytoprotective acclimatory memory.

2016 ◽  
Vol 120 (6) ◽  
pp. 702-710 ◽  
Author(s):  
Michal Horowitz

Studying “phenotypic plasticity” involves comparison of traits expressed in response to environmental fluctuations and aims to understand tolerance and survival in new settings. Reversible phenotypic changes that enable individuals to match their phenotype to environmental demands throughout life can be artificially induced, i.e., acclimation or occur naturally, i.e., acclimatization. The onset and achievement of acclimatory homeostasis are determined by molecular programs that induce the acclimated transcriptome. In heat acclimation, much evidence suggests that epigenetic mechanisms are powerful players in these processes. Epigenetic mechanisms affect the accessibility of the DNA to transcription factors, thereby regulating gene expression and controlling the phenotype. The heat-acclimated phenotype confers cytoprotection against novel stressors via cross-tolerance mechanisms, by attenuation of the initial damage and/or by accelerating spontaneous recovery through the release of help signals. This indispensable acclimatory feature has a memory and can be rapidly reestablished after the loss of acclimation and the return to the physiological preacclimated phenotype. The transcriptional landscape of the deacclimated phenotype includes constitutive transcriptional activation of epigenetic bookmarks. Heat shock protein (HSP) 70/HSP90/heat shock factor 1 memory protocol demonstrated constitutive histone H4 acetylation on hsp70 and hsp90 promotors. Novel players in the heat acclimation setup are poly(ADP-ribose)ribose polymerase 1 affecting chromatin condensation, DNA linker histones from the histone H1 cluster, and transcription factors associated with the P38 pathway. We suggest that these orchestrated responses maintain euchromatin and proteostasis during deacclimation and predispose to rapid reacclimation and cytoprotection. These mechanisms represent within-life epigenetic adaptations and cytoprotective memory.


2004 ◽  
Vol 15 (2) ◽  
pp. 543-551 ◽  
Author(s):  
Nicoletta Rizzi ◽  
Marco Denegri ◽  
Ilaria Chiodi ◽  
Margherita Corioni ◽  
Rut Valgardsdottir ◽  
...  

Heat shock triggers the assembly of nuclear stress bodies that contain heat shock factor 1 and a subset of RNA processing factors. These structures are formed on the pericentromeric heterochromatic regions of specific human chromosomes, among which chromosome 9. In this article we show that these heterochromatic domains are characterized by an epigenetic status typical of euchromatic regions. Similarly to transcriptionally competent portions of the genome, stress bodies are, in fact, enriched in acetylated histone H4. Acetylation peaks at 6 h of recovery from heat shock. Moreover, heterochromatin markers, such as HP1 and histone H3 methylated on lysine 9, are excluded from these nuclear districts. In addition, heat shock triggers the transient accumulation of RNA molecules, heterogeneous in size, containing the subclass of satellite III sequences found in the pericentromeric heterochromatin of chromosome 9. This is the first report of a transcriptional activation of a constitutive heterochromatic portion of the genome in response to stress stimuli.


2013 ◽  
Vol 33 (16) ◽  
pp. 3286-3298 ◽  
Author(s):  
Zhongqi Ge ◽  
Devi Nair ◽  
Xiaoyan Guan ◽  
Neha Rastogi ◽  
Michael A. Freitas ◽  
...  

The best-characterized acetylation of newly synthesized histone H4 is the diacetylation of the NH2-terminal tail on lysines 5 and 12. Despite its evolutionary conservation, this pattern of modification has not been shown to be essential for either viability or chromatin assembly in any model organism. We demonstrate that mutations in histone H4 lysines 5 and 12 in yeast confer hypersensitivity to replication stress and DNA-damaging agents when combined with mutations in histone H4 lysine 91, which has also been found to be a site of acetylation on soluble histone H4. In addition, these mutations confer a dramatic decrease in cell viability when combined with mutations in histone H3 lysine 56. We also show that mutation of the sites of acetylation on newly synthesized histone H4 results in defects in the reassembly of chromatin structure that accompanies the repair of HO-mediated double-strand breaks. This defect is not due to a decrease in the level of histone H3 lysine 56 acetylation. Intriguingly, mutations that alter the sites of newly synthesized histone H4 acetylation display a marked decrease in levels of phosphorylated H2A (γ-H2AX) in chromatin surrounding the double-strand break. These results indicate that the sites of acetylation on newly synthesized histones H3 and H4 can function in nonoverlapping ways that are required for chromatin assembly, viability, and DNA damage response signaling.


1999 ◽  
Vol 19 (1) ◽  
pp. 855-863 ◽  
Author(s):  
Keiko Ikeda ◽  
David J. Steger ◽  
Anton Eberharter ◽  
Jerry L. Workman

ABSTRACT Recent progress in identifying the catalytic subunits of histone acetyltransferase (HAT) complexes has implicated histone acetylation in the regulation of transcription. Here, we have analyzed the function of two native yeast HAT complexes, SAGA (Spt-Ada-Gcn5 Acetyltransferase) and NuA4 (nucleosome acetyltransferase of H4), in activating transcription from preassembled nucleosomal array templates in vitro. Each complex was tested for the ability to enhance transcription driven by GAL4 derivatives containing either acidic, glutamine-rich, or proline-rich activation domains. On nucleosomal array templates, the SAGA complex selectively stimulates transcription driven by the VP16 acidic activation domain in an acetyl coenzyme A-dependent manner. In contrast, the NuA4 complex facilitates transcription mediated by any of the activation domains tested if allowed to preacetylate the nucleosomal template, indicating a general stimulatory effect of histone H4 acetylation. However, when the extent of acetylation by NuA4 is limited, the complex also preferentially stimulates VP16-driven transcription. SAGA and NuA4 interact directly with the VP16 activation domain but not with a glutamine-rich or proline-rich activation domain. These data suggest that recruitment of the SAGA and NuA4 HAT complexes by the VP16 activation domain contributes to HAT-dependent activation. In addition, extensive H4/H2B acetylation by NuA4 leads to a general activation of transcription, which is independent of activator-NuA4 interactions.


2003 ◽  
Vol 50 (2) ◽  
pp. 535-541 ◽  
Author(s):  
Wiesława Widłak ◽  
Konrad Benedyk ◽  
Natallia Vydra ◽  
Magdalena Głowala ◽  
Dorota Scieglińska ◽  
...  

Heat shock activates in somatic cells a set of genes encoding heat shock proteins which function as molecular chaperones. The basic mechanism by which these genes are activated is the interaction of the specific transcription factor HSF1 with a regulatory DNA sequence called heat shock element (HSE). In higher eukaryotes HSF1 is present in unstressed cells as inactive monomers which, in response to cellular stress, aggregate into transcriptionally competent homotrimers. In the present paper we showed that the expression of a transgene encoding mutated constitutively active HSF1 placed under the control of a spermatocyte-specific promoter derived from the hst70 gene severely affects spermatogenesis. We found the testes of transgenic mice to be significantly smaller than those of wild-type males and histological analysis showed massive degeneration of the seminiferous epithelium. The lumen of tubules was devoid of spermatids and spermatozoa and using the TUNEL method we demonstrated a high rate of spermatocyte apoptosis. The molecular mechanism by which constitutively active HSF1 arrests spermatogenesis is not known so far. One can assume that HSF1 can either induce or repress so far unknown target genes involved in germ cell apoptosis.


2012 ◽  
Vol 36 (3) ◽  
pp. 165-171 ◽  
Author(s):  
M. Spinaci ◽  
C. Vallorani ◽  
D. Bucci ◽  
C. Tamanini ◽  
E. Porcu ◽  
...  

2005 ◽  
Vol 25 (21) ◽  
pp. 9175-9188 ◽  
Author(s):  
Edwin R. Smith ◽  
Christelle Cayrou ◽  
Rong Huang ◽  
William S. Lane ◽  
Jacques Côté ◽  
...  

ABSTRACT We describe a stable, multisubunit human histone acetyltransferase complex (hMSL) that contains homologs of the Drosophila dosage compensation proteins MOF, MSL1, MSL2, and MSL3. This complex shows strong specificity for histone H4 lysine 16 in chromatin in vitro, and RNA interference-mediated knockdown experiments reveal that it is responsible for the majority of H4 acetylation at lysine 16 in the cell. We also find that hMOF is a component of additional complexes, forming associations with host cell factor 1 and a protein distantly related to MSL1 (hMSL1v1). We find two versions of hMSL3 in the hMSL complex that differ by the presence of the chromodomain. Lastly, we find that reduction in the levels of hMSLs and acetylation of H4 at lysine 16 are correlated with reduced transcription of some genes and with a G2/M cell cycle arrest. This is of particular interest given the recent correlation of global loss of acetylation of lysine 16 in histone H4 with tumorigenesis.


Viruses ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 525 ◽  
Author(s):  
Liqian Zhu ◽  
Xinyi Jiang ◽  
Xiaotian Fu ◽  
Yanhua Qi ◽  
Guoqiang Zhu

During bovine herpesvirus 1 (BoHV-1) productive infection in cell cultures, partial of intranuclear viral DNA is present in nucleosomes, and viral protein VP22 associates with histones and decreases histone H4 acetylation, indicating the involvement of histone H4 acetylation in virus replication. In this study, we demonstrated that BoHV-1 infection at the late stage (at 24 h after infection) dramatically decreased histone H3 acetylation [at residues K9 (H3K9ac) and K18 (H3K18ac)], which was supported by the pronounced depletion of histone acetyltransferases (HATs) including CBP/P300 (CREB binding protein and p300), GCN5L2 (general control of amino acid synthesis yeast homolog like 2) and PCAF (P300/CBP-associated factor). The depletion of GCN5L2 promoted by virus infection was partially mediated by ubiquitin-proteasome pathway. Interestingly, the viral replication was enhanced by HAT (histone acetyltransferase) activator CTPB [N-(4-Chloro-3-trifluoromethylphenyl)-2-ethoxy-6-pentadecylbenzamide], and vice versa, inhibited by HAT inhibitor Anacardic acid (AA), suggesting that BoHV-1 may take advantage of histone acetylation for efficient replication. Taken together, we proposed that the HAT-dependent histone H3 acetylation plays an important role in BoHV-1 replication in MDBK (Madin-Darby bovine kidney) cells.


2018 ◽  
Vol 29 (26) ◽  
pp. 3168-3182 ◽  
Author(s):  
David Pincus ◽  
Jayamani Anandhakumar ◽  
Prathapan Thiru ◽  
Michael J. Guertin ◽  
Alexander M. Erkine ◽  
...  

Heat shock factor 1 is the master transcriptional regulator of molecular chaperones and binds to the same cis-acting heat shock element (HSE) across the eukaryotic lineage. In budding yeast, Hsf1 drives the transcription of ∼20 genes essential to maintain proteostasis under basal conditions, yet its specific targets and extent of inducible binding during heat shock remain unclear. Here we combine Hsf1 chromatin immunoprecipitation sequencing (seq), nascent RNA-seq, and Hsf1 nuclear depletion to quantify Hsf1 binding and transcription across the yeast genome. We find that Hsf1 binds 74 loci during acute heat shock, and these are linked to 46 genes with strong Hsf1-dependent expression. Notably, Hsf1’s induced DNA binding leads to a disproportionate (∼7.5-fold) increase in nascent transcription. Promoters with high basal Hsf1 occupancy have nucleosome-depleted regions due to the presence of “pioneer factors.” These accessible sites are likely critical for Hsf1 occupancy as the activator is incapable of binding HSEs within a stably positioned, reconstituted nucleosome. In response to heat shock, however, Hsf1 accesses nucleosomal sites and promotes chromatin disassembly in concert with the Remodels Structure of Chromatin (RSC) complex. Our data suggest that the interplay between nucleosome positioning, HSE strength, and active Hsf1 levels allows cells to precisely tune expression of the proteostasis network.


Sign in / Sign up

Export Citation Format

Share Document