Adaptation of pulmonary O2 uptake kinetics and muscle deoxygenation at the onset of heavy-intensity exercise in young and older adults
The purpose was to examine the adaptation of pulmonary O2 uptake (V̇o2p) and deoxygenation of the vastus lateralis muscle at the onset of heavy-intensity, constant-load cycling exercise in young (Y; 24 ± 4 yr; mean ± SD; n = 5) and older (O; 68 ± 3 yr; n = 6) adults. Subjects performed repeated transitions on 4 separate days from 20 W to a work rate corresponding to heavy-intensity exercise. V̇o2p was measured breath by breath. The concentration changes in oxyhemoglobin, deoxyhemoglobin (HHb), and total hemoglobin/myoglobin were determined by near-infrared spectroscopy (Hamamatsu NIRO-300). V̇o2p data were filtered, interpolated to 1 s, and averaged to 5-s bins. HHb-near-infrared spectroscopy data were filtered and averaged to 5-s bins. A monoexponential model was used to fit V̇o2p [phase 2, time constant (τ) of V̇o2p] and HHb [following the time delay (TD) from exercise onset to the start of an increase in HHb] data. The τV̇o2p was slower ( P < 0.001) in O (49 ± 8 s) than Y (29 ± 4 s). The HHb TD was similar in O (8 ± 3 s) and Y (7 ± 1 s); however, the τ HHb following TD was faster ( P < 0.05) in O (8 ± 2 s) than Y (14 ± 2 s). The slower V̇o2p kinetics and faster muscle deoxygenation in O compared with Y during heavy-intensity exercise imply that the kinetics of muscle perfusion are slowed relatively more than those of V̇o2p in O. This suggests that the slowed V̇o2p kinetics in O may be a consequence of a slower adaptation of local muscle blood flow relative to that in Y.