Footstrike is the major cause of hemolysis during running

2003 ◽  
Vol 94 (1) ◽  
pp. 38-42 ◽  
Author(s):  
R. D. Telford ◽  
G. J. Sly ◽  
A. G. Hahn ◽  
R. B. Cunningham ◽  
C. Bryant ◽  
...  

There is a wide body of literature reporting red cell hemolysis as occurring after various forms of exercise. Whereas the trauma associated with footstrike is thought to be the major cause of hemolysis after running, its significance compared with hemolysis that results from other circulatory stresses on the red blood cell has not been thoroughly addressed. To investigate the significance of footstrike, we measured the degree of hemolysis after 1 h of running. To control for the potential effects of oxidative and circulatory stresses on the red blood cell, the same subjects cycled for 1 h at equivalent oxygen uptake. Our subjects were 10 male triathletes, who each completed two separate 1-h sessions of running and cycling at 75% peak oxygen uptake, which were performed in random order 1 wk apart. Plasma free hemoglobin and serum haptoglobin concentrations were measured as indicators of hemolysis. We also measured methemoglobin as a percentage of total hemoglobin immediately postexercise as an indicator of red cell oxidative stress. Plasma free hemoglobin increased after both running ( P < 0.01) and cycling ( P < 0.01), but the increase was fourfold greater after running ( P < 0.01). This was reflected by a significant fall in haptoglobin 1 h after the running trials, whereas no significant changes occurred after cycling at any sample point. Methemoglobin increased twofold after both running and cycling ( P < 0.01), with no significant differences between modes of exercise. The present data indicate that, whereas general circulatory trauma to the red blood cells associated with 1 h of exercise at 75% maximal oxygen uptake may result in some exercise-induced hemolysis, footstrike is the major contributor to hemolysis during running.

1993 ◽  
Vol 75 (2) ◽  
pp. 491-498 ◽  
Author(s):  
W. Schaffartzik ◽  
E. D. Barton ◽  
D. C. Poole ◽  
K. Tsukimoto ◽  
M. C. Hogan ◽  
...  

Maximum oxygen uptake (VO2max) is affected by hemoglobin concentration ([Hb]). Whether this is simply due to altered convection of O2 into the muscle microcirculation or also to [Hb]-dependent diffusive transport of O2 out of the muscle capillary is unknown in humans. To examine this, seven healthy volunteers performed four maximal cycle exercise bouts at sea level immediately after 8 wk at altitude (3,801 m, barometric pressure 485 Torr), a sojourn designed to increase [Hb]. The first two bouts were at ambient [Hb] of 15.9 +/- 0.7 g/100 ml breathing 21 or 12% O2 in random order. [Hb] was then decreased to a prealtitude level of 13.8 +/- 0.6 g/100 ml by venesection and isovolemic replacement with 5% albumin in 0.9% saline, and the exercise bouts were repeated. At whole body VO2max, PO2, PCO2, pH, and O2 saturation were measured in radial arterial and femoral venous blood. Femoral venous thermodilution blood flow was determined for calculation of leg VO2. Mean muscle capillary PO2 and muscle diffusing capacity (DO2) were computed by Bohr integration between measured arterial and femoral venous PO2. Averaged over both fractional concentrations of inspired O2, leg VO2 at maximum decreased by 17.7 +/- 4.3% as [Hb] was lowered while leg O2 delivery decreased by 17.5 +/- 2.6% and DO2 decreased by 10.7 +/- 2.7% (all P < 0.05). The relative contributions of decreases in leg O2 delivery and DO2 to the decrease in VO2max were computed to be 64 and 36%, respectively. These findings suggest that [Hb] is an important determinant of O2 diffusion rates into working muscle in humans. Possible mechanisms include 1) dependence of DO2 on intracapillary red blood cell spacing, 2) changes in the total rate of dissociation of O2 from [Hb], and 3) increased red blood cell flow heterogeneity as [Hb] is reduced.


Circulation ◽  
2011 ◽  
Vol 124 (4) ◽  
pp. 465-476 ◽  
Author(s):  
Chenell Donadee ◽  
Nicolaas J.H. Raat ◽  
Tamir Kanias ◽  
Jesús Tejero ◽  
Janet S. Lee ◽  
...  

1996 ◽  
Vol 13 (01) ◽  
pp. 27-33 ◽  
Author(s):  
Steven Inglis ◽  
Andrzej Lysikiewicz ◽  
Amy Sonnenblick ◽  
Jane Streltzoff ◽  
James Bussel ◽  
...  

Blood ◽  
1982 ◽  
Vol 60 (6) ◽  
pp. 1332-1336 ◽  
Author(s):  
MG Luthra ◽  
DA Sears

Abstract To determine whether diminished activity of the Ca++ extrusion pump could account for the high levels of red blood cell (RBC) Ca++ in sickle cell anemia (SS), we measured calmodulin-sensitive Ca++ ATPase activity in normal and SS RBC. Hemolysates prepared with saponin were compared, since such preparations expressed maximum ATPase activities, exceeding isolated membranes or reconstituted systems of membranes plus cytosol, SS RBC hemolysates had greater Ca++ ATPase activity than normal hemolysates; they exhibited higher Mg++ and Na+ + K+ ATPase activities as well. Assays on density (age) fractions of SS and normal red cells demonstrated that all ATPase activities were highest in low density (young) cells, and activities in SS red cells exceeded those in normals in all fractions studied. Thus, when studied under conditions that maximize enzyme activity, Ca++ ATPase activity, like Mg++ and Na+ + K+ ATPase, is actually increased in SS RBC, probably due to the young red cell population present. The elevated Ca++ levels in these cells are more likely due to an increased Ca++ leak or abnormal calcium binding than to defective extrusion by the ATPase pump.


2015 ◽  
Vol 05 (03) ◽  
pp. 004-008
Author(s):  
Mohammed Saleem E. K. ◽  
Soundarya Mahalingam ◽  
Shamee Shastri ◽  
Kamalakshi G. Bhat

AbstractThe development of red blood cell (RBC) isoimmunization with alloantibodies and autoantibodies complicate transfusion therapy in multiply transfused thalassemia patients. We conducted a study to analyse the frequency in our population. Clinical and antibody profile from 55 multiply transfused thalassemic patients who were receiving transfusions were collected and analyzed prospectively. A commercially available 3 cell antigen panel was used for the antibody screening procedure. If antibody screening with the 3-cell antigen panel was positive, an extended 11-cell antigen panel was used for antibody identification in LISS (Low Ionic Strength Solution). All patients received blood matched for only ABO and Rh (D) antigens. A total of 55 transfusion dependent â thalassemics were included in this study out of which 30 (54.55%) were males and 25(45.45%) females with a male to female ratio of 1.2: 1. Frequency of red cell alloimmunization in this study was found to be 1.8%. None of the patients developed red cell autoimmunization. The alloantibody identified in the the patient who developed alloimmunisation was was anti-K. In conclusion, the transfusion of matched blood is essential for chronically transfused beta thalassemia patients in order to avoid alloimmunization.


1955 ◽  
Vol 102 (6) ◽  
pp. 725-731 ◽  
Author(s):  
G. H. Whipple ◽  
F. S. Robscheit-Robbins ◽  
W. F. Bale

During active blood regeneration in anemia in dogs an increase occurs in the stroma protein of the red cells. When vitamin B12 with radioactive cobalt is given at the start of this blood regeneration one finds concentration of labeled B12 in the stroma protein but not in the hemoglobin. After the acute phase of red cell regeneration is ended the concentration of B12 in stroma protein falls rapidly to very low levels within 2 weeks. Subsequent episodes of red blood cell regeneration seems not to cause remobilization of radioactive cobalt into red cells from other body stores. It appears that the vitamin B12 is a factor of importance in the first steps of stroma protein formation in the first few days of the life of the red cell in the dog. This response in dogs and the response in pernicious anemia to vitamin B12 may have some points in common. Distribution of the B12-radioactive cobalt in the organs and tissues at autopsy has been recorded. Some very suggestive localizations were noted and some variation 1 week and 7 weeks after B12 injections. Radioactive cobalt escapes in the urine during the weeks following B12 injections.


2017 ◽  
Vol 114 (16) ◽  
pp. 4225-4230 ◽  
Author(s):  
Marion Koch ◽  
Katherine E. Wright ◽  
Oliver Otto ◽  
Maik Herbig ◽  
Nichole D. Salinas ◽  
...  

Invasion of the red blood cell (RBC) by the Plasmodium parasite defines the start of malaria disease pathogenesis. To date, experimental investigations into invasion have focused predominantly on the role of parasite adhesins or signaling pathways and the identity of binding receptors on the red cell surface. A potential role for signaling pathways within the erythrocyte, which might alter red cell biophysical properties to facilitate invasion, has largely been ignored. The parasite erythrocyte-binding antigen 175 (EBA175), a protein required for entry in most parasite strains, plays a key role by binding to glycophorin A (GPA) on the red cell surface, although the function of this binding interaction is unknown. Here, using real-time deformability cytometry and flicker spectroscopy to define biophysical properties of the erythrocyte, we show that EBA175 binding to GPA leads to an increase in the cytoskeletal tension of the red cell and a reduction in the bending modulus of the cell’s membrane. We isolate the changes in the cytoskeleton and membrane and show that reduction in the bending modulus is directly correlated with parasite invasion efficiency. These data strongly imply that the malaria parasite primes the erythrocyte surface through its binding antigens, altering the biophysical nature of the target cell and thus reducing a critical energy barrier to invasion. This finding would constitute a major change in our concept of malaria parasite invasion, suggesting it is, in fact, a balance between parasite and host cell physical forces working together to facilitate entry.


2015 ◽  
Vol 47 ◽  
pp. 64
Author(s):  
Michael J. Falvo ◽  
Jacquelyn C. Klein ◽  
Duncan S. Ndirangu ◽  
Yang Chen ◽  
Michael R. Condon

Sign in / Sign up

Export Citation Format

Share Document