Time-course of V̇O2 kinetics responses during moderate-intensity exercise subsequent to HIIT vs moderate-intensity continuous training in type 2 diabetes.
We assessed the time course of changes in oxygen uptake (V̇O2) and muscle deoxygenation (i.e., deoxygenated haemoglobin and myoglobin, [HHb+Mb]) kinetics during transitions to moderate-intensity cycling following 12-weeks of low-volume high-intensity interval training (HIIT) vs. moderate-intensity continuous training (MICT) in adults with type 2 diabetes (T2D). Participants were randomly assigned to MICT (n=10, 50 min of moderate-intensity cycling), HIIT (n=9, 10x1 min at ~90% maximal heart rate) or non-exercising control (n=9) groups. Exercising groups trained 3 times per week and measurements were taken every 3 weeks. [HHb+Mb] kinetics were measured by near-infrared spectroscopy at the vastus lateralis muscle. The local matching of O2 delivery to O2 utilization was assessed by the Δ[HHb+Mb]/ΔV̇O2ratio. The pretraining time constant of the primary phase of V̇O2 (τV̇O2p ) decreased (P<0.05) at wk 3 of training in both MICT (from 44±12 to 32±5 s) and HIIT (from 42±8 to 32 ± 4 s) with no further changes thereafter; while no changes were reported in controls. The pretraining overall dynamic response of muscle deoxygenation (τ'[HHb+Mb]) was faster than τV̇O2p in all groups, resulting in Δ[HHb+Mb]/V̇O2p showing a transient "overshoot" relative to the subsequent steady-state level. After 3 wks, the Δ[HHb+Mb]/V̇O2p overshoot was eliminated only in the training groups, so that τ'[HHb+Mb] was not different to τV̇O2p in MICT and HIIT. The enhanced V̇O2 kinetics response consequent to both MICT and HIIT in T2D was likely attributed to a training-induced improvement in matching of O2 delivery to utilization.