scholarly journals Effect of endurance and/or strength training on muscle fiber size, oxidative capacity, and capillarity in hemodialysis patients

2015 ◽  
Vol 119 (8) ◽  
pp. 865-871 ◽  
Author(s):  
Michael I. Lewis ◽  
Mario Fournier ◽  
Huiyuan Wang ◽  
Thomas W. Storer ◽  
Richard Casaburi ◽  
...  

We previously reported reduced limb muscle fiber succinate dehydrogenase (SDH) activity and capillarity density and increased cross-sectional areas (CSAs) of all fiber types in maintenance hemodialysis (MHD) patients compared with matched controls that may contribute to their effort intolerance and muscle weakness. This study evaluated whether endurance training (ET), strength training (ST), or their combination (EST) alters these metabolic and morphometric aberrations as a mechanism for functional improvement. Five groups were evaluated: 1) controls; 2) MHD/no training; 3) MHD/ET; 4) MHD/ST; and 5) MHD/EST. Training duration was 21.5 ± 0.7 wk. Vastus lateralis muscle biopsies were obtained after HD at baseline and at study end. Muscle fibers were classified immunohistochemically, and fiber CSAs were computed. Individual fiber SDH activity was determined by a microdensitometric assay. Capillaries were identified using antibodies against endothelial cells. Type I and IIA fiber CSAs decreased significantly (10%) with EST. In the ET group, SDH activity increased 16.3% in type IIA and 19.6% in type IIX fibers. Capillary density increased significantly by 28% in the EST group and 14.3% with ET. The number of capillaries surrounding individual fiber type increased significantly in EST and ET groups. Capillary-to-fiber ratio increased significantly by 11 and 9.6% in EST and ET groups, respectively. We conclude that increments in capillarity and possibly SDH activity in part underlie improvements in endurance of MHD patients posttraining. We speculate that improved specific force and/or neural adaptations to exercise underlie improvements in limb muscle strength of MHD patients.

2012 ◽  
Vol 112 (1) ◽  
pp. 72-78 ◽  
Author(s):  
Michael I. Lewis ◽  
Mario Fournier ◽  
Huiyuan Wang ◽  
Thomas W. Storer ◽  
Richard Casaburi ◽  
...  

Muscle weakness and effort intolerance are common in maintenance hemodialysis (MHD) patients. This study characterized morphometric, histochemical, and biochemical properties of limb muscle in MHD patients compared with controls (CTL) with similar age, gender, and ethnicity. Vastus lateralis muscle biopsies were obtained from 60 MHD patients, 1 day after dialysis, and from 21 CTL. Muscle fiber types and capillaries were identified immunohistochemically. Individual muscle fiber cross-sectional areas (CSA) were quantified. Individual fiber oxidative capacities were determined (microdensitometric assay) to measure succinate dehydrogenase (SDH) activity. Mean CSAs of type I, IIA, and IIX fibers were 33, 26, and 28% larger in MHD patients compared with CTL. SDH activities for type I, IIA, and IIX fibers were reduced by 29, 40, and 47%, respectively, in MHD. Capillary to fiber ratio was increased by 11% in MHD. The number of capillaries surrounding individual fiber types were also increased (type I: 9%; IIA: 10%; IIX: 23%) in MHD patients. However, capillary density (capillaries per unit muscle fiber area) was reduced by 34% in MHD patients, compared with CTL. Ultrastuctural analysis revealed swollen mitochondria with dense matrix in MHD patients. These results highlight impaired oxidative capacity and capillarity in MHD patients. This would be expected to impair energy production as well as substrate and oxygen delivery and exchange and contribute to exercise intolerance. The enlarged CSA of muscle fibers may, in part, be accounted for by edema. We speculate that these changes contribute to reduce limb strength in MHD patients by reducing specific force.


2012 ◽  
Vol 22 (4) ◽  
pp. 292-303 ◽  
Author(s):  
Ildus I. Ahmetov ◽  
Olga L. Vinogradova ◽  
Alun G. Williams

The ability to perform aerobic or anaerobic exercise varies widely among individuals, partially depending on their muscle-fiber composition. Variability in the proportion of skeletal-muscle fiber types may also explain marked differences in aspects of certain chronic disease states including obesity, insulin resistance, and hypertension. In untrained individuals, the proportion of slow-twitch (Type I) fibers in the vastus lateralis muscle is typically around 50% (range 5–90%), and it is unusual for them to undergo conversion to fast-twitch fibers. It has been suggested that the genetic component for the observed variability in the proportion of Type I fibers in human muscles is on the order of 40–50%, indicating that muscle fiber-type composition is determined by both genotype and environment. This article briefly reviews current progress in the understanding of genetic determinism of fiber-type proportion in human skeletal muscle. Several polymorphisms of genes involved in the calcineurin–NFAT pathway, mitochondrial biogenesis, glucose and lipid metabolism, cytoskeletal function, hypoxia and angiogenesis, and circulatory homeostasis have been associated with fiber-type composition. As muscle is a major contributor to metabolism and physical strength and can readily adapt, it is not surprising that many of these gene variants have been associated with physical performance and athlete status, as well as metabolic and cardiovascular diseases. Genetic variants associated with fiber-type proportions have important implications for our understanding of muscle function in both health and disease.


1996 ◽  
Vol 80 (3) ◽  
pp. 1061-1064 ◽  
Author(s):  
D. Constantin-Teodosiu ◽  
S. Howell ◽  
P. L. Greenhaff

The effect of prolonged exhaustive exercise on free carnitine and acetylcarnitine concentrations in mixed-fiber skeletal muscle and in type I and II muscle fibers was investigated in humans. Needle biopsy samples were obtained from the vastus lateralis of six subjects immediately after exhaustive one-legged cycling at approximately 75% of maximal O2 uptake from both the exercised and nonexercised (control) legs. In the resting (control) leg, there was no difference in the free carnitine concentration between type I and II fibers (20.36 +/- 1.25 and 20.51 +/- 1.16 mmol/kg dry muscle, respectively) despite the greater potential for fat oxidation in type I fibers. However, the acetylcarnitine concentration was slightly greater in type I fibers (P < 0.01). During exercise, acetylcarnitine accumulation occurred in both muscle fiber types, but accumulation was greatest in type I fibers (P < 0.005). Correspondingly, the concentration of free carnitine was significantly lower in type I fibers at the end of exercise (P < 0.001). The sum of free carnitine and acetylcarnitine concentrations in type I and II fibers at rest was similar and was unchanged by exercise. In conclusion, the findings of the present study support the suggestion that carnitine buffers excess acetyl group formation during exercise and that this occurs in both type I and II fibers. However, the greater accumulation of acetylcarnitine in type I fibers during prolonged exercise probably reflects the greater mitochondrial content of this fiber type.


1983 ◽  
Vol 245 (2) ◽  
pp. H368-H374 ◽  
Author(s):  
I. H. Sarelius ◽  
L. C. Maxwell ◽  
S. D. Gray ◽  
B. R. Duling

We determined muscle fiber type and capillarity in cremaster muscle samples from rats and hamsters of different ages. Histochemical estimation of oxidative capacity was made from the activity of either nicotinamide dinucleotide tetrazolium reductase (NADH-TR) or succinic dehydrogenase (SDH), and fibers were termed fast or slow from myofibrillar ATPase activity. Fibers were classified as type I (low ATPase, high NADH-TR/SDH), type IIa (high ATPase, high SDH/NADH-TR), type IIb (high ATPase, low SDH/NADH-TR), or type IIc (no acid reversal of ATPase, high NADH-TR). Type IIb fibers accounted for 60-80% of the muscle area in both species at all ages. The principal change with maturation was muscle fiber hypertrophy. Mean cross-sectional fiber area increased from 488 +/- 70 (SE) and 453 +/- 19 micron2 in young hamsters and rats, respectively, to 1,255 +/- 99 and 1,540 +/- 101 micron2 in adults. Capillary density (no. of capillaries/mm2 tissue) paralleled fiber hypertrophy; it decreased significantly with maturation from 684 +/- 60 (SE) to 228 +/- 26/mm2 in hamsters and from 341 +/- 15 to 213 +/- 15/mm2 in rats. In vitro estimates of capillary density are compared with previously obtained in vivo data (31), and sources of error are identified. We conclude that reported differences in microvascular function in the cremaster muscle in vivo during maturation or between species cannot be ascribed to changes in muscle composition.


1991 ◽  
Vol 261 (5) ◽  
pp. C774-C779 ◽  
Author(s):  
M. Locke ◽  
E. G. Noble ◽  
B. G. Atkinson

The most prominent group of stress or heat-shock proteins (HSPs) has an Mr of approximately 70,000 and is collectively referred to as the HSP70 family. The extent of stress inducibility and subcellular location of the various HSP70 isoforms differ, but all appear to be involved with ATP-dependent stabilization or solubilization of proteins. One isoform, termed the inducible isoform of HSP70 (HSP72i), is normally absent in unstressed cells. In a previous study, we detected a protein corresponding in Mr and pI to HSP72i in unstressed rat muscle. Therefore, it was of interest to determine if this expression in unstressed muscle cells is general or confined to specific muscle fiber types. To answer this question we have employed various rat hindlimb muscles that differ in fiber type proportion from predominantly type I (soleus) to predominantly type IIB (white gastrocnemius). Proteins from muscle homogenates were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, blotted to a nylon membrane, probed with a monoclonal antibody for HSP72i, and visualized using an alkaline phosphatase-conjugated secondary antibody. Immunoblot analyses demonstrate the constitutive expression of HSP72i in rat muscles comprised primarily of type I muscle fibers (soleus), but not in muscles comprised primarily of type IIB fibers (white gastrocnemius). In muscles of mixed fiber type, HSP72i content is roughly proportional to the percentage of type I fibers. These results substantiate that unstressed rat muscles express the inducible HSP72 isoform and demonstrate that its constitutive expression is proportional to the type I muscle fiber composition.


1992 ◽  
Vol 40 (4) ◽  
pp. 563-568 ◽  
Author(s):  
R S Staron ◽  
R S Hikida

A muscle biopsy from the vastus lateralis muscle of a strength-trained woman was found to contain an unusual fiber type composition and was analyzed by histochemical, biochemical, and ultrastructural techniques. Special attention was given to the C-fibers, which comprised over 15% of the total fiber number in the biopsy. The mATPase activity of the C-fibers remained stable to varying degrees over the pH range normally used for routine mATPase histochemistry. Although a continuum existed, the C-fibers were histochemically subdivided into three main fiber types: IC, IIC, and IIAC. The IC fibers were histochemically more similar to the Type I, the IIAC were more similar to the Type IIA, and the IIC were darkly stained throughout the pH range. Biochemical analysis revealed that all C-fibers coexpressed myosin heavy chains (MHC) I and IIa in variable ratios. The histochemical staining intensity correlated with the myosin heavy chain composition such that the Type IC fibers contained a greater ratio of MHCI/MHCIIa, the IIAC contained a greater ratio of MHCIIa/MHCI, and the Type IIC contained equal amounts of these two heavy chains. Ultrastructural data of the C-fiber population revealed an oxidative capacity between fiber Types I and IIA and suggested a range of mitochondrial volume percent from highest to lowest such that I greater than IC greater than IIC greater than IIA-C greater than IIA. Under physiological conditions, it appears that the IC fibers represent Type I fibers that additionally express some fast characteristics, whereas the Type IIAC are Type IIA fibers that additionally express some slow characteristics. Fibers expressing a 50:50 mixture of MHCI and MHCIIa (IIC fibers) were rarely found. It is not known whether C-fibers represent a distinct population between the fast- and slow-twitch fibers that is specifically adapted to a particular usage or whether they are transforming fibers in the process of going from fast to slow or slow to fast.


1993 ◽  
Vol 41 (7) ◽  
pp. 1013-1021 ◽  
Author(s):  
S Boudriau ◽  
M Vincent ◽  
C H Côté ◽  
P A Rogers

We used immunochemical quantification and indirect immunofluorescence to investigate the cell content, distribution, and organization of microtubules in adult rat slow-twitch soleus and fast-twitch vastus lateralis muscles. An immunoblotting assay demonstrated that the soleus muscle (primarily Type I fibers) was found to have a 1.7-fold higher relative content of alpha-tubulin compared with the superficial portion of the vastus lateralis muscle (primarily Type IIb fibers). Both physiological muscle types revealed a complex arrangement of microtubules which displayed oblique, longitudinal, and transverse orientations within the sarcoplasmic space. The predominance of any one particular orientation varied significantly from one muscle tissue section to another. Nuclei were completely surrounded by a dense net-like structure of microtubules. Both muscle fiber types were found to possess a higher density of microtubules in the subsarcolemmal region. These microtubules followed the contour of the sarcolemma in slightly contracted fibers and showed a fine punctate appearance indicative of a restricted distribution. The immunofluorescence results indicate that microtubules are associated with the sarcolemma and therefore may form a part of the membrane cytoskeletal domain of the muscle fiber. We conclude that the microtubule network of the adult mammalian skeletal muscle fiber constitutes a bone fide component of the exosarcomeric cytoskeletal lattice domain along with the intermediate filaments, and as such could therefore participate in the mechanical integration of the various organelles of the myofibers during the contraction-relaxation cycle.


1989 ◽  
Vol 257 (4) ◽  
pp. E567-E572 ◽  
Author(s):  
J. A. Simoneau ◽  
C. Bouchard

The purpose of the present study was to describe the extent of the variation in some of the common characteristics of human skeletal muscle. A total of 418 biopsies was obtained from the vastus lateralis muscle of 270 healthy sedentary and 148 physically active individuals of both sexes. The lowest and highest proportion of type I muscle fiber observed were 15 and 85%, respectively. Coefficients of variation (CV) reached approximately 30% for the proportion of types I and IIA fibers and were two times higher for the proportion of type IIB fiber. The smallest and largest mean muscle fiber cross-sectional areas (CSA) were approximately 1,100 microns 2 and 9,500 microns 2, respectively. Mean CSA of the various fiber types exhibited CV of approximately 23%. CV reached 30% for the activity of creatine kinase, ranged between 28 and 41% for the glycolytic enzyme markers, and between 34 and 44% for the aerobic-oxidative enzyme markers. The mean proportion of type I fiber was lower in male than in female muscles, whereas the mean CSA of all fiber types was smaller in female than in male muscles. Levels of glycolytic enzyme markers were higher in male than in female skeletal muscles. However, activities of aerobic-oxidative enzyme markers were similar in males and females. These results reveal the existence of large interindividual variability and gender differences in the most common characteristics of the human skeletal muscle.


2009 ◽  
Vol 106 (3) ◽  
pp. 959-965 ◽  
Author(s):  
Barbara Norman ◽  
Mona Esbjörnsson ◽  
Håkan Rundqvist ◽  
Ted Österlund ◽  
Ferdinand von Walden ◽  
...  

α-Actinins are structural proteins of the Z-line. Human skeletal muscle expresses two α-actinin isoforms, α-actinin-2 and α-actinin-3, encoded by their respective genes ACTN2 and ACTN3. ACTN2 is expressed in all muscle fiber types, while only type II fibers, and particularly the type IIb fibers, express ACTN3. ACTN3 (R577X) polymorphism results in loss of α-actinin-3 and has been suggested to influence skeletal muscle function. The X allele is less common in elite sprint and power athletes than in the general population and has been suggested to be detrimental for performance requiring high power. The present study investigated the association of ACTN3 genotype with muscle power during 30-s Wingate cycling in 120 moderately to well-trained men and women and with knee extensor strength and fatigability in a subset of 21 men performing isokinetic exercise. Muscle biopsies were obtained from the vastus lateralis muscle to determine fiber-type composition and ACTN2 and ACTN3 mRNA levels. Peak and mean power and the torque-velocity relationship and fatigability output showed no difference across ACTN3 genotypes. Thus this study suggests that R577X polymorphism in ACTN3 is not associated with differences in power output, fatigability, or force-velocity characteristics in moderately trained individuals. However, repeated exercise bouts prompted an increase in peak torque in RR but not in XX genotypes, suggesting that ACTN3 genotype may modulate responsiveness to training. Our data further suggest that α-actinins do not play a significant role in determining muscle fiber-type composition. Finally, we show that ACTN2 expression is affected by the content of α-actinin-3, which implies that α-actinin-2 may compensate for the lack of α-actinin-3 and hence counteract the phenotypic consequences of the deficiency.


2015 ◽  
Vol 118 (6) ◽  
pp. 699-706 ◽  
Author(s):  
V. L. Wyckelsma ◽  
M. J. McKenna ◽  
F. R. Serpiello ◽  
C. R. Lamboley ◽  
R. J. Aughey ◽  
...  

The Na+-K+-ATPase (NKA) plays a key role in muscle excitability, but little is known in human skeletal muscle about fiber-type-specific differences in NKA isoform expression or adaptability. A vastus lateralis muscle biopsy was taken in 17 healthy young adults to contrast NKA isoform protein relative abundance between type I and IIa fibers. We further investigated muscle fiber-type-specific NKA adaptability in eight of these adults following 4-wk repeated-sprint exercise (RSE) training, comprising three sets of 5 × 4-s sprints, 3 days/wk. Single fibers were separated, and myosin heavy chain (I and IIa) and NKA (α1–3 and β1–3) isoform abundance were determined via Western blotting. All six NKA isoforms were expressed in both type I and IIa fibers. No differences between fiber types were found for α1-, α2-, α3-, β1-, or β3-isoform abundances. The NKA β2-isoform was 27% more abundant in type IIa than type I fibers ( P < 0.05), with no other fiber-type-specific trends evident. RSE training increased β1 in type IIa fibers (pretraining 0.70 ± 0.25, posttraining 0.84 ± 0.24 arbitrary units, 42%, P < 0.05). No training effects were found for other NKA isoforms. Thus human skeletal muscle expresses all six NKA isoforms and not in a fiber-type-specific manner; this points to their different functional roles in skeletal muscle cells. Detection of elevated NKA β1 after RSE training demonstrates the sensitivity of the single-fiber Western blotting technique for fiber-type-specific intervention effects.


Sign in / Sign up

Export Citation Format

Share Document