scholarly journals Metabolic and morphometric profile of muscle fibers in chronic hemodialysis patients

2012 ◽  
Vol 112 (1) ◽  
pp. 72-78 ◽  
Author(s):  
Michael I. Lewis ◽  
Mario Fournier ◽  
Huiyuan Wang ◽  
Thomas W. Storer ◽  
Richard Casaburi ◽  
...  

Muscle weakness and effort intolerance are common in maintenance hemodialysis (MHD) patients. This study characterized morphometric, histochemical, and biochemical properties of limb muscle in MHD patients compared with controls (CTL) with similar age, gender, and ethnicity. Vastus lateralis muscle biopsies were obtained from 60 MHD patients, 1 day after dialysis, and from 21 CTL. Muscle fiber types and capillaries were identified immunohistochemically. Individual muscle fiber cross-sectional areas (CSA) were quantified. Individual fiber oxidative capacities were determined (microdensitometric assay) to measure succinate dehydrogenase (SDH) activity. Mean CSAs of type I, IIA, and IIX fibers were 33, 26, and 28% larger in MHD patients compared with CTL. SDH activities for type I, IIA, and IIX fibers were reduced by 29, 40, and 47%, respectively, in MHD. Capillary to fiber ratio was increased by 11% in MHD. The number of capillaries surrounding individual fiber types were also increased (type I: 9%; IIA: 10%; IIX: 23%) in MHD patients. However, capillary density (capillaries per unit muscle fiber area) was reduced by 34% in MHD patients, compared with CTL. Ultrastuctural analysis revealed swollen mitochondria with dense matrix in MHD patients. These results highlight impaired oxidative capacity and capillarity in MHD patients. This would be expected to impair energy production as well as substrate and oxygen delivery and exchange and contribute to exercise intolerance. The enlarged CSA of muscle fibers may, in part, be accounted for by edema. We speculate that these changes contribute to reduce limb strength in MHD patients by reducing specific force.

2015 ◽  
Vol 119 (8) ◽  
pp. 865-871 ◽  
Author(s):  
Michael I. Lewis ◽  
Mario Fournier ◽  
Huiyuan Wang ◽  
Thomas W. Storer ◽  
Richard Casaburi ◽  
...  

We previously reported reduced limb muscle fiber succinate dehydrogenase (SDH) activity and capillarity density and increased cross-sectional areas (CSAs) of all fiber types in maintenance hemodialysis (MHD) patients compared with matched controls that may contribute to their effort intolerance and muscle weakness. This study evaluated whether endurance training (ET), strength training (ST), or their combination (EST) alters these metabolic and morphometric aberrations as a mechanism for functional improvement. Five groups were evaluated: 1) controls; 2) MHD/no training; 3) MHD/ET; 4) MHD/ST; and 5) MHD/EST. Training duration was 21.5 ± 0.7 wk. Vastus lateralis muscle biopsies were obtained after HD at baseline and at study end. Muscle fibers were classified immunohistochemically, and fiber CSAs were computed. Individual fiber SDH activity was determined by a microdensitometric assay. Capillaries were identified using antibodies against endothelial cells. Type I and IIA fiber CSAs decreased significantly (10%) with EST. In the ET group, SDH activity increased 16.3% in type IIA and 19.6% in type IIX fibers. Capillary density increased significantly by 28% in the EST group and 14.3% with ET. The number of capillaries surrounding individual fiber type increased significantly in EST and ET groups. Capillary-to-fiber ratio increased significantly by 11 and 9.6% in EST and ET groups, respectively. We conclude that increments in capillarity and possibly SDH activity in part underlie improvements in endurance of MHD patients posttraining. We speculate that improved specific force and/or neural adaptations to exercise underlie improvements in limb muscle strength of MHD patients.


1993 ◽  
Vol 41 (7) ◽  
pp. 1013-1021 ◽  
Author(s):  
S Boudriau ◽  
M Vincent ◽  
C H Côté ◽  
P A Rogers

We used immunochemical quantification and indirect immunofluorescence to investigate the cell content, distribution, and organization of microtubules in adult rat slow-twitch soleus and fast-twitch vastus lateralis muscles. An immunoblotting assay demonstrated that the soleus muscle (primarily Type I fibers) was found to have a 1.7-fold higher relative content of alpha-tubulin compared with the superficial portion of the vastus lateralis muscle (primarily Type IIb fibers). Both physiological muscle types revealed a complex arrangement of microtubules which displayed oblique, longitudinal, and transverse orientations within the sarcoplasmic space. The predominance of any one particular orientation varied significantly from one muscle tissue section to another. Nuclei were completely surrounded by a dense net-like structure of microtubules. Both muscle fiber types were found to possess a higher density of microtubules in the subsarcolemmal region. These microtubules followed the contour of the sarcolemma in slightly contracted fibers and showed a fine punctate appearance indicative of a restricted distribution. The immunofluorescence results indicate that microtubules are associated with the sarcolemma and therefore may form a part of the membrane cytoskeletal domain of the muscle fiber. We conclude that the microtubule network of the adult mammalian skeletal muscle fiber constitutes a bone fide component of the exosarcomeric cytoskeletal lattice domain along with the intermediate filaments, and as such could therefore participate in the mechanical integration of the various organelles of the myofibers during the contraction-relaxation cycle.


2012 ◽  
Vol 22 (4) ◽  
pp. 292-303 ◽  
Author(s):  
Ildus I. Ahmetov ◽  
Olga L. Vinogradova ◽  
Alun G. Williams

The ability to perform aerobic or anaerobic exercise varies widely among individuals, partially depending on their muscle-fiber composition. Variability in the proportion of skeletal-muscle fiber types may also explain marked differences in aspects of certain chronic disease states including obesity, insulin resistance, and hypertension. In untrained individuals, the proportion of slow-twitch (Type I) fibers in the vastus lateralis muscle is typically around 50% (range 5–90%), and it is unusual for them to undergo conversion to fast-twitch fibers. It has been suggested that the genetic component for the observed variability in the proportion of Type I fibers in human muscles is on the order of 40–50%, indicating that muscle fiber-type composition is determined by both genotype and environment. This article briefly reviews current progress in the understanding of genetic determinism of fiber-type proportion in human skeletal muscle. Several polymorphisms of genes involved in the calcineurin–NFAT pathway, mitochondrial biogenesis, glucose and lipid metabolism, cytoskeletal function, hypoxia and angiogenesis, and circulatory homeostasis have been associated with fiber-type composition. As muscle is a major contributor to metabolism and physical strength and can readily adapt, it is not surprising that many of these gene variants have been associated with physical performance and athlete status, as well as metabolic and cardiovascular diseases. Genetic variants associated with fiber-type proportions have important implications for our understanding of muscle function in both health and disease.


1996 ◽  
Vol 80 (3) ◽  
pp. 1061-1064 ◽  
Author(s):  
D. Constantin-Teodosiu ◽  
S. Howell ◽  
P. L. Greenhaff

The effect of prolonged exhaustive exercise on free carnitine and acetylcarnitine concentrations in mixed-fiber skeletal muscle and in type I and II muscle fibers was investigated in humans. Needle biopsy samples were obtained from the vastus lateralis of six subjects immediately after exhaustive one-legged cycling at approximately 75% of maximal O2 uptake from both the exercised and nonexercised (control) legs. In the resting (control) leg, there was no difference in the free carnitine concentration between type I and II fibers (20.36 +/- 1.25 and 20.51 +/- 1.16 mmol/kg dry muscle, respectively) despite the greater potential for fat oxidation in type I fibers. However, the acetylcarnitine concentration was slightly greater in type I fibers (P < 0.01). During exercise, acetylcarnitine accumulation occurred in both muscle fiber types, but accumulation was greatest in type I fibers (P < 0.005). Correspondingly, the concentration of free carnitine was significantly lower in type I fibers at the end of exercise (P < 0.001). The sum of free carnitine and acetylcarnitine concentrations in type I and II fibers at rest was similar and was unchanged by exercise. In conclusion, the findings of the present study support the suggestion that carnitine buffers excess acetyl group formation during exercise and that this occurs in both type I and II fibers. However, the greater accumulation of acetylcarnitine in type I fibers during prolonged exercise probably reflects the greater mitochondrial content of this fiber type.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Han Wang ◽  
Zhonghao Shen ◽  
Xiaolong Zhou ◽  
Songbai Yang ◽  
Feifei Yan ◽  
...  

The difference in muscle fiber types is very important to the muscle development and meat quality of broilers. At present, the molecular regulation mechanisms of skeletal muscle fiber-type transformation in broilers are still unclear. In this study, differentially expressed genes between breast and leg muscles in broilers were analyzed using RNA-seq. A total of 767 DEGs were identified. Compared with leg muscle, there were 429 upregulated genes and 338 downregulated genes in breast muscle. Gene Ontology (GO) enrichment indicated that these DEGs were mainly involved in cellular processes, single organism processes, cells, and cellular components, as well as binding and catalytic activity. KEGG analysis shows that a total of 230 DEGs were mapped to 126 KEGG pathways and significantly enriched in the four pathways of glycolysis/gluconeogenesis, starch and sucrose metabolism, insulin signalling pathways, and the biosynthesis of amino acids. Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) was used to verify the differential expression of 7 selected DEGs, and the results were consistent with RNA-seq data. In addition, the expression profile of MyHC isoforms in chicken skeletal muscle cells showed that with the extension of differentiation time, the expression of fast fiber subunits (types IIA and IIB) gradually increased, while slow muscle fiber subunits (type I) showed a downward trend after 4 days of differentiation. The differential genes screened in this study will provide some new ideas for further understanding the molecular mechanism of skeletal muscle fiber transformation in broilers.


1985 ◽  
Vol 54 (4) ◽  
pp. 818-836 ◽  
Author(s):  
R. P. Dum ◽  
M. J. O'Donovan ◽  
J. Toop ◽  
R. E. Burke

The properties of flexor digitorum longus (FDL) muscles and of individual motor units were studied in cats 30-50 wk after self-reinnervation by FDL motoneurons (FDL----FDL) or cross-reinnervation by soleus (SOL) motoneurons (SOL----FDL). Individual motor units were functionally isolated by intracellular recording and stimulation of identified SOL alpha-motoneurons. Glycogen-depletion methods permitted histochemical study of muscle fibers belonging to physiologically characterized muscle units. The observations were compared with data from normal cat FDL muscles and motor units (27). Intentionally self-reinnervated FDL muscles (FDL----FDL; n = 5) were normal in size and wet weight. FDL----FDL motor units could be classified into the same physiological categories found in normal FDL [types: fast contracting, fatigable (FF), fast contracting, fatigue resistant (FR), and slow (S); n = 24], with approximately the same proportions as normal. The histochemical muscle fiber types associated with these categories were also qualitatively normal although there was evidence of marked distortion of the normal histochemical mosaic. These data confirm other studies of self-reinnervation and suggest that self-reinnervation can produce complete interconversion of muscle fiber types. Cross-reinnervation of FDL muscle by SOL motoneurons (SOL----FDL; n = 12) produced muscles that were smaller (about half the normal wet weight) and more red than normal. SOL----FDL muscle contracted more slowly than normal or FDL----FDL muscles and had much higher proportions of histochemical type I muscle fibers. In those SOL----FDL muscles, in which little or no unwanted self-reinnervation could be demonstrated, greater than 95% of the muscle fibers were type I. Forty-one individual motor units in SOL----FDL muscles were isolated by intracellular penetration in functionally identified SOL alpha-motoneurons. Their muscle units were all type S by physiological criteria (absence of "sag" in unfused tetani and marked resistance to fatigue). SOL----FDL muscle units had contraction times and fatigue properties that were essentially identical to those of type S units in the normal FDL. All of the seven units, successfully studied by glycogen depletion, exhibited histochemical type I fibers. SOL motoneurons that innervated FDL muscle units had slightly shorter afterhyperpolarization durations than normal SOL cells, but axonal conduction velocities were normal.(ABSTRACT TRUNCATED AT 400 WORDS)


1996 ◽  
Vol 270 (1) ◽  
pp. H115-H120 ◽  
Author(s):  
H. N. Sabbah ◽  
H. Shimoyama ◽  
V. G. Sharov ◽  
T. Kono ◽  
R. C. Gupta ◽  
...  

The proportion of slow-twitch, fatigue-resistant type 1 skeletal muscle (SM) fibers is often reduced in heart failure (HF), while the proportion of fatigue-sensitive type-II fibers increases. This maladaptation may be partially responsible for the exercise intolerance that characterize HF. In this study, we examined the effects of early monotherapy with the angiotensin-converting enzyme inhibor, enalapril, and the beta-blocker, metoprolol, on SM fiber type composition in 18 dogs with moderate HF produced by intracoronary microembolizations. HF dogs were randomized to 3 mo therapy with enalapril (10 mg twice daily), metoprolol (25 mg twice daily), or no treatment. Triceps muscle biopsies were obtained at baseline, before randomization, and at the end of 30 mo of therapy. Type I and type II SM fibers were differentiated by myofibrillar adenosinetriphosphatase (pH 9.4). In untreated dogs, the proportion of type I fibers was 27 +/- 1% before randomization and decreased to 23 +/- 1% (P < 0.05) at the end of 3 mo of follow up. In dogs treated with enalapril or metoprolol, the proportion of type I fibers was 30 +/- 4 and 28 +/- 2% before randomization and 33 +/- 4 and 33 +/- 1%, respectively, after 3 mo of therapy. In conclusion, in dogs with moderate HF, early therapy with enalapril or metoprolol prevents the progressive decline in the proportion of type I SM fibers.


Author(s):  
Emre Sirin

This study was conducted to determine muscle fiber characteristics and their effect on some meat quality parameters in Longissimus dorsi (LD) and Semitendinosus (ST) muscles from kids of some Turkish native goat breeds. Male kids of Hair (n=6), Angora (n=6), Kilis (n=6) and Honamli (n=6) (pure breeds) were used as experimental animals. All kids were slaughtered at 3 months of weaning age and muscles samples were collected for determination of type I, IIA and IIB muscle fibers and some meat quality parameters. It was found that type IIA fiber number of Hair and Honamli kids were higher than those of other breeds in LD muscle. Similarly, Hair kids had higher number of (P less than 0.05) type IIA in ST muscle compared to other breeds. Generally, there were negative correlations between tenderness, pH and number of muscle fiber types in LD and ST muscles of all breeds (P less than0.05). Also, there were positive correlations between intra muscular fat and number of muscle fiber types in LD muscles of all breeds (P less than 0.05). Conclusively, kids of Turkish native goat breeds had different muscle fiber characteristics which can affect meat quality.


1991 ◽  
Vol 261 (5) ◽  
pp. C774-C779 ◽  
Author(s):  
M. Locke ◽  
E. G. Noble ◽  
B. G. Atkinson

The most prominent group of stress or heat-shock proteins (HSPs) has an Mr of approximately 70,000 and is collectively referred to as the HSP70 family. The extent of stress inducibility and subcellular location of the various HSP70 isoforms differ, but all appear to be involved with ATP-dependent stabilization or solubilization of proteins. One isoform, termed the inducible isoform of HSP70 (HSP72i), is normally absent in unstressed cells. In a previous study, we detected a protein corresponding in Mr and pI to HSP72i in unstressed rat muscle. Therefore, it was of interest to determine if this expression in unstressed muscle cells is general or confined to specific muscle fiber types. To answer this question we have employed various rat hindlimb muscles that differ in fiber type proportion from predominantly type I (soleus) to predominantly type IIB (white gastrocnemius). Proteins from muscle homogenates were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, blotted to a nylon membrane, probed with a monoclonal antibody for HSP72i, and visualized using an alkaline phosphatase-conjugated secondary antibody. Immunoblot analyses demonstrate the constitutive expression of HSP72i in rat muscles comprised primarily of type I muscle fibers (soleus), but not in muscles comprised primarily of type IIB fibers (white gastrocnemius). In muscles of mixed fiber type, HSP72i content is roughly proportional to the percentage of type I fibers. These results substantiate that unstressed rat muscles express the inducible HSP72 isoform and demonstrate that its constitutive expression is proportional to the type I muscle fiber composition.


1984 ◽  
Vol 32 (11) ◽  
pp. 1211-1216 ◽  
Author(s):  
P M Nemeth ◽  
O H Lowry

An attempt was made to determine the relationship of myoglobin content to specific fiber types in human muscle. Biopsies were obtained from biceps brachii, vastus lateralis, and gastrocnemius muscles of untrained subjects and from the vastus lateralis muscle of a highly trained athlete at peak training and at intervals of no training (detraining). Individual muscle fibers were assayed, by quantitative microanalytical methods, for myoglobin, lactate dehydrogenase, malate dehydrogenase, citrate synthase, beta-hydroxyacyl-coenzyme A dehydrogenase, and adenylokinase activities all on the same fiber. The enzyme levels were used to classify the fibers into type I or II. The results show that the content of myoglobin in human muscle does not differ greatly between fiber types in contrast to other species. The type II fibers contained, on the average, at least two-thirds as much myoglobin as type I fibers. The concentration of myoglobin did not change in either fiber type during detraining (84 days), despite marked changes in lactate dehydrogenase, adenylokinase and the three oxidative enzymes.


Sign in / Sign up

Export Citation Format

Share Document