scholarly journals On the Origin of the Extracellular Field Potential in the Nucleus Laminaris of the Barn Owl (Tyto alba)

2010 ◽  
Vol 104 (4) ◽  
pp. 2274-2290 ◽  
Author(s):  
Paula T. Kuokkanen ◽  
Hermann Wagner ◽  
Go Ashida ◽  
Catherine E. Carr ◽  
Richard Kempter

The neurophonic is a sound-evoked, frequency-following potential that can be recorded extracellularly in nucleus laminaris of the barn owl. The origin of the neurophonic, and thus the mechanisms that give rise to its exceptional temporal precision, has not yet been identified. Putative generators of the neurophonic are the activity of afferent axons, synaptic activation of laminaris neurons, or action potentials in laminaris neurons. To identify the generators, we analyzed the neurophonic in the high-frequency (>2.5 kHz) region of nucleus laminaris in response to monaural pure-tone stimulation. The amplitude of the neurophonic is typically in the millivolt range. The signal-to-noise ratio reaches values beyond 30 dB. To assess which generators could give rise to these large, synchronous extracellular potentials, we developed a computational model. Spike trains were produced by an inhomogeneous Poisson process and convolved with a spike waveform. The model explained the dependence of the simulated neurophonic on parameters such as the mean rate, the vector strength of phase locking, the number of statistically independent sources, and why the signal-to-noise ratio is independent of the spike waveform and subsequent filtering of the signal. We found that several hundred sources are needed to reach the observed signal-to-noise ratio. The summed coherent signal from the densely packed afferent axons and activation of their synapses on laminaris neurons are alone sufficient to explain the measured properties of the neurophonic.

2012 ◽  
Vol 108 (10) ◽  
pp. 2837-2845 ◽  
Author(s):  
Go Ashida ◽  
Kazuo Funabiki ◽  
Paula T. Kuokkanen ◽  
Richard Kempter ◽  
Catherine E. Carr

Owls use interaural time differences (ITDs) to locate a sound source. They compute ITD in a specialized neural circuit that consists of axonal delay lines from the cochlear nucleus magnocellularis (NM) and coincidence detectors in the nucleus laminaris (NL). Recent physiological recordings have shown that tonal stimuli induce oscillatory membrane potentials in NL neurons (Funabiki K, Ashida G, Konishi M. J Neurosci 31: 15245–15256, 2011). The amplitude of these oscillations varies with ITD and is strongly correlated to the firing rate. The oscillation, termed the sound analog potential, has the same frequency as the stimulus tone and is presumed to originate from phase-locked synaptic inputs from NM fibers. To investigate how these oscillatory membrane potentials are generated, we applied recently developed signal-to-noise ratio (SNR) analysis techniques (Kuokkanen PT, Wagner H, Ashida G, Carr CE, Kempter R. J Neurophysiol 104: 2274–2290, 2010) to the intracellular waveforms obtained in vivo. Our theoretical prediction of the band-limited SNRs agreed with experimental data for mid- to high-frequency (>2 kHz) NL neurons. For low-frequency (≤2 kHz) NL neurons, however, measured SNRs were lower than theoretical predictions. These results suggest that the number of independent NM fibers converging onto each NL neuron and/or the population-averaged degree of phase-locking of the NM fibers could be significantly smaller in the low-frequency NL region than estimated for higher best-frequency NL.


2017 ◽  
Vol 26 (12) ◽  
pp. 123701 ◽  
Author(s):  
Wenhao Wang ◽  
Wenliang Liu ◽  
Jizhou Wu ◽  
Yuqing Li ◽  
Xiaofeng Wang ◽  
...  

2009 ◽  
Vol 10 (S1) ◽  
Author(s):  
Paula T Kuokkanen ◽  
Nico Lautemann ◽  
Hermann Wagner ◽  
Richard Kempter

2000 ◽  
Vol 111 (5) ◽  
pp. 837-849 ◽  
Author(s):  
G Winterer ◽  
M Ziller ◽  
H Dorn ◽  
K Frick ◽  
C Mulert ◽  
...  

Author(s):  
David A. Grano ◽  
Kenneth H. Downing

The retrieval of high-resolution information from images of biological crystals depends, in part, on the use of the correct photographic emulsion. We have been investigating the information transfer properties of twelve emulsions with a view toward 1) characterizing the emulsions by a few, measurable quantities, and 2) identifying the “best” emulsion of those we have studied for use in any given experimental situation. Because our interests lie in the examination of crystalline specimens, we've chosen to evaluate an emulsion's signal-to-noise ratio (SNR) as a function of spatial frequency and use this as our critereon for determining the best emulsion.The signal-to-noise ratio in frequency space depends on several factors. First, the signal depends on the speed of the emulsion and its modulation transfer function (MTF). By procedures outlined in, MTF's have been found for all the emulsions tested and can be fit by an analytic expression 1/(1+(S/S0)2). Figure 1 shows the experimental data and fitted curve for an emulsion with a better than average MTF. A single parameter, the spatial frequency at which the transfer falls to 50% (S0), characterizes this curve.


Author(s):  
W. Kunath ◽  
K. Weiss ◽  
E. Zeitler

Bright-field images taken with axial illumination show spurious high contrast patterns which obscure details smaller than 15 ° Hollow-cone illumination (HCI), however, reduces this disturbing granulation by statistical superposition and thus improves the signal-to-noise ratio. In this presentation we report on experiments aimed at selecting the proper amount of tilt and defocus for improvement of the signal-to-noise ratio by means of direct observation of the electron images on a TV monitor.Hollow-cone illumination is implemented in our microscope (single field condenser objective, Cs = .5 mm) by an electronic system which rotates the tilted beam about the optic axis. At low rates of revolution (one turn per second or so) a circular motion of the usual granulation in the image of a carbon support film can be observed on the TV monitor. The size of the granular structures and the radius of their orbits depend on both the conical tilt and defocus.


Author(s):  
D. C. Joy ◽  
R. D. Bunn

The information available from an SEM image is limited both by the inherent signal to noise ratio that characterizes the image and as a result of the transformations that it may undergo as it is passed through the amplifying circuits of the instrument. In applications such as Critical Dimension Metrology it is necessary to be able to quantify these limitations in order to be able to assess the likely precision of any measurement made with the microscope.The information capacity of an SEM signal, defined as the minimum number of bits needed to encode the output signal, depends on the signal to noise ratio of the image - which in turn depends on the probe size and source brightness and acquisition time per pixel - and on the efficiency of the specimen in producing the signal that is being observed. A detailed analysis of the secondary electron case shows that the information capacity C (bits/pixel) of the SEM signal channel could be written as :


1979 ◽  
Vol 10 (4) ◽  
pp. 221-230 ◽  
Author(s):  
Veronica Smyth

Three hundred children from five to 12 years of age were required to discriminate simple, familiar, monosyllabic words under two conditions: 1) quiet, and 2) in the presence of background classroom noise. Of the sample, 45.3% made errors in speech discrimination in the presence of background classroom noise. The effect was most marked in children younger than seven years six months. The results are discussed considering the signal-to-noise ratio and the possible effects of unwanted classroom noise on learning processes.


2020 ◽  
Vol 63 (1) ◽  
pp. 345-356
Author(s):  
Meital Avivi-Reich ◽  
Megan Y. Roberts ◽  
Tina M. Grieco-Calub

Purpose This study tested the effects of background speech babble on novel word learning in preschool children with a multisession paradigm. Method Eight 3-year-old children were exposed to a total of 8 novel word–object pairs across 2 story books presented digitally. Each story contained 4 novel consonant–vowel–consonant nonwords. Children were exposed to both stories, one in quiet and one in the presence of 4-talker babble presented at 0-dB signal-to-noise ratio. After each story, children's learning was tested with a referent selection task and a verbal recall (naming) task. Children were exposed to and tested on the novel word–object pairs on 5 separate days within a 2-week span. Results A significant main effect of session was found for both referent selection and verbal recall. There was also a significant main effect of exposure condition on referent selection performance, with more referents correctly selected for word–object pairs that were presented in quiet compared to pairs presented in speech babble. Finally, children's verbal recall of novel words was statistically better than baseline performance (i.e., 0%) on Sessions 3–5 for words exposed in quiet, but only on Session 5 for words exposed in speech babble. Conclusions These findings suggest that background speech babble at 0-dB signal-to-noise ratio disrupts novel word learning in preschool-age children. As a result, children may need more time and more exposures of a novel word before they can recognize or verbally recall it.


Sign in / Sign up

Export Citation Format

Share Document