scholarly journals Circuit mechanisms revealed by spike-timing correlations in macaque area MT

2013 ◽  
Vol 109 (3) ◽  
pp. 851-866 ◽  
Author(s):  
Xin Huang ◽  
Stephen G. Lisberger

We recorded simultaneously from pairs of motion-sensitive neurons in the middle temporal cortex (MT) of macaque monkeys and used cross-correlations in the timing of spikes between neurons to gain insights into cortical circuitry. We characterized the time course and stimulus dependency of the cross-correlogram (CCG) for each pair of neurons and of the auto-correlogram (ACG) of the individual neurons. For some neuron pairs, the CCG showed negative flanks that emerged next to the central peak during stimulus-driven responses. Similar negative flanks appeared in the ACG of many neurons. Negative flanks were most prevalent and deepest when the neurons were driven to high rates by visual stimuli that moved in the neurons' preferred directions. The temporal development of the negative flanks in the CCG coincided with a parallel, modest reduction of the noise correlation between the spike counts of the neurons. Computational analysis of a model cortical circuit suggested that negative flanks in the CCG arise from the excitation-triggered mutual cross-inhibition between pairs of excitatory neurons. Intracortical recurrent inhibition and afterhyperpolarization caused by intrinsic outward currents, such as the calcium-activated potassium current of small conductance, can both contribute to the negative flanks in the ACG. In the model circuit, stronger intracortical inhibition helped to maintain the temporal precision between the spike trains of pairs of neurons and led to weaker noise correlations. Our results suggest a neural circuit architecture that can leverage activity-dependent intracortical inhibition to adaptively modulate both the synchrony of spike timing and the correlations in response variability.

2015 ◽  
Vol 114 (4) ◽  
pp. 2204-2219 ◽  
Author(s):  
Clifford H. Keller ◽  
Terry T. Takahashi

Spike rate adaptation (SRA) is a continuing change of responsiveness to ongoing stimuli, which is ubiquitous across species and levels of sensory systems. Under SRA, auditory responses to constant stimuli change over time, relaxing toward a long-term rate often over multiple timescales. With more variable stimuli, SRA causes the dependence of spike rate on sound pressure level to shift toward the mean level of recent stimulus history. A model based on subtractive adaptation (Benda J, Hennig RM. J Comput Neurosci 24: 113–136, 2008) shows that changes in spike rate and level dependence are mechanistically linked. Space-specific neurons in the barn owl's midbrain, when recorded under ketamine-diazepam anesthesia, showed these classical characteristics of SRA, while at the same time exhibiting changes in spike timing precision. Abrupt level increases of sinusoidally amplitude-modulated (SAM) noise initially led to spiking at higher rates with lower temporal precision. Spike rate and precision relaxed toward their long-term values with a time course similar to SRA, results that were also replicated by the subtractive model. Stimuli whose amplitude modulations (AMs) were not synchronous across carrier frequency evoked spikes in response to stimulus envelopes of a particular shape, characterized by the spectrotemporal receptive field (STRF). Again, abrupt stimulus level changes initially disrupted the temporal precision of spiking, which then relaxed along with SRA. We suggest that shifts in latency associated with stimulus level changes may differ between carrier frequency bands and underlie decreased spike precision. Thus SRA is manifest not simply as a change in spike rate but also as a change in the temporal precision of spiking.


2011 ◽  
Vol 105 (4) ◽  
pp. 1889-1896 ◽  
Author(s):  
Andrew M. Rosen ◽  
Jonathan D. Victor ◽  
Patricia M. Di Lorenzo

Recent studies have provided evidence that temporal coding contributes significantly to encoding taste stimuli at the first central relay for taste, the nucleus of the solitary tract (NTS). However, it is not known whether this coding mechanism is also used at the next synapse in the central taste pathway, the parabrachial nucleus of the pons (PbN). In the present study, electrophysiological responses to taste stimuli (sucrose, NaCl, HCl, and quinine) were recorded from 44 cells in the PbN of anesthetized rats. In 29 cells, the contribution of the temporal characteristics of the response to the discrimination of various taste qualities was assessed. A family of metrics that quantifies the similarity of two spike trains in terms of spike count and spike timing was used. Results showed that spike timing in 14 PbN cells (48%) conveyed a significant amount of information about taste quality, beyond what could be conveyed by spike count alone. In another 14 cells (48%), the rate envelope (time course) of the response contributed significantly more information than spike count alone. Across cells there was a significant correlation ( r = 0.51; P < 0.01) between breadth of tuning and the proportion of information conveyed by temporal dynamics. Comparison with previous data from the NTS (Di Lorenzo PM and Victor JD. J Neurophysiol 90: 1418–31, 2003 and J Neurophysiol 97: 1857–1861, 2007) showed that temporal coding in the NTS occurred in a similar proportion of cells and contributed a similar fraction of the total information at the same average level of temporal precision, even though trial-to-trial variability was higher in the PbN than in the NTS. These data suggest that information about taste quality conveyed by the temporal characteristics of evoked responses is transmitted with high fidelity from the NTS to the PbN.


2005 ◽  
Vol 93 (6) ◽  
pp. 3248-3256 ◽  
Author(s):  
Veronika Zsiros ◽  
Shaul Hestrin

The temporal precision of converting excitatory postsynaptic potentials (EPSPs) into spikes at pyramidal cells is critical for the coding of information in the cortex. Several in vitro studies have shown that voltage-dependent conductances in pyramidal cells can prolong the EPSP time course resulting in an imprecise EPSP-spike coupling. We have used dynamic-clamp techniques to mimic the in vivo background synaptic conductance in cortical slices and investigated how the ongoing synaptic activity may affect the EPSP time course near threshold and the EPSP spike coupling. We report here that background synaptic conductance dramatically diminished the depolarization related prolongation of the EPSPs in pyramidal cells and improved the precision of spike timing. Furthermore, we found that background synaptic conductance can affect the interaction among action potentials in a spike train. Thus the level of ongoing synaptic activity in the cortex may regulate the capacity of pyramidal cells to process temporal information.


2001 ◽  
Vol 40 (01) ◽  
pp. 31-37 ◽  
Author(s):  
U. Wellner ◽  
E. Voth ◽  
H. Schicha ◽  
K. Weber

Summary Aim: The influence of physiological and pharmacological amounts of iodine on the uptake of radioiodine in the thyroid was examined in a 4-compartment model. This model allows equations to be derived describing the distribution of tracer iodine as a function of time. The aim of the study was to compare the predictions of the model with experimental data. Methods: Five euthyroid persons received stable iodine (200 μg, 10 mg). 1-123-uptake into the thyroid was measured with the Nal (Tl)-detector of a body counter under physiological conditions and after application of each dose of additional iodine. Actual measurements and predicted values were compared, taking into account the individual iodine supply as estimated from the thyroid uptake under physiological conditions and data from the literature. Results: Thyroid iodine uptake decreased from 80% under physiological conditions to 50% in individuals with very low iodine supply (15 μg/d) (n = 2). The uptake calculated from the model was 36%. Iodine uptake into the thyroid did not decrease in individuals with typical iodine supply, i.e. for Cologne 65-85 μg/d (n = 3). After application of 10 mg of stable iodine, uptake into the thyroid decreased in all individuals to about 5%, in accordance with the model calculations. Conclusion: Comparison of theoretical predictions with the measured values demonstrated that the model tested is well suited for describing the time course of iodine distribution and uptake within the body. It can now be used to study aspects of iodine metabolism relevant to the pharmacological administration of iodine which cannot be investigated experimentally in humans for ethical and technical reasons.


Author(s):  
P.L. Luque ◽  
G.J. Pierce ◽  
J.A. Learmonth ◽  
M.B. Santos ◽  
E. Ieno ◽  
...  

We examined the tooth ultra-structure of harbour porpoises (Phocoena phocoena) from Scottish waters to determine whether the incidence of mineralization anomalies could be related to certain life history events (e.g. the achievement of sexual maturation) as well as other factors that affect the general health of the individual (e.g. persistent organic pollutant (POP) concentrations in blubber). Five distinct types of mineralization anomalies were recorded: accessory lines, marker lines, dentinal resorption, cemental disturbance and pulp stones and the occurrence of these anomalies was scored by sex, age and maturity state. Overall, the incidence of mineralization anomalies was high and tended to increase with age. Marker lines and accessory lines were the most commonly recorded anomalies while pulp stones were least frequent. Duplicate teeth (i.e. from the same individual) always showed the same pattern of anomaly occurrence.Fitted binary generalized linear and additive models indicated that the presence of dentinal resorption, cemental disturbance and marker lines in harbour porpoise teeth increased with age, body length and maturity. Males displayed marker lines more frequently than females. Age was the best predictor of the incidence of dentinal resorption and cemental disturbance while age and sex were the best predictors of the incidence of marker lines. The time course of appearance of dentinal resorption and cemental disturbance suggests that their occurrence could be related to physiological stress linked to sexual maturation. Marker lines were found within growth layer groups which coincided with the beginning of weaning and sexual maturation, suggesting an association with these two major life history events. Accessory lines were found in most teeth and may be a normal characteristic of porpoise teeth or reflect regular events. Pulp stones appeared only in mature animals. We found no evidence that the presence of anomalies in teeth was significantly related to POP concentrations in the blubber.


2008 ◽  
Vol 20 (4) ◽  
pp. 974-993 ◽  
Author(s):  
Arunava Banerjee ◽  
Peggy Seriès ◽  
Alexandre Pouget

Several recent models have proposed the use of precise timing of spikes for cortical computation. Such models rely on growing experimental evidence that neurons in the thalamus as well as many primary sensory cortical areas respond to stimuli with remarkable temporal precision. Models of computation based on spike timing, where the output of the network is a function not only of the input but also of an independently initializable internal state of the network, must, however, satisfy a critical constraint: the dynamics of the network should not be sensitive to initial conditions. We have previously developed an abstract dynamical system for networks of spiking neurons that has allowed us to identify the criterion for the stationary dynamics of a network to be sensitive to initial conditions. Guided by this criterion, we analyzed the dynamics of several recurrent cortical architectures, including one from the orientation selectivity literature. Based on the results, we conclude that under conditions of sustained, Poisson-like, weakly correlated, low to moderate levels of internal activity as found in the cortex, it is unlikely that recurrent cortical networks can robustly generate precise spike trajectories, that is, spatiotemporal patterns of spikes precise to the millisecond timescale.


2005 ◽  
Vol 94 (4) ◽  
pp. 2644-2652 ◽  
Author(s):  
Makoto Araki ◽  
Toshiki Nagayama ◽  
Jordanna Sprayberry

The lateral giant (LG)-mediated escape behavior of the crayfish habituates readily on repetitive sensory stimulation. Recent studies suggested that the biogenic amines serotonin and octopamine modulate the time course of recovery and/or re-depression of the LG response after habituation. However, little is known of how serotonin and octopamine effect LG habituation and what second-messenger cascades they may activate. To investigate the effect of biogenic amines on LG habituation, serotonin and octopamine were superfused before presenting repetitive sensory stimulation. Serotonin and octopamine increased the number of stimuli needed to habituate the LG response. Their effects were mimicked by mixed application of a cAMP analogue [8-(4-chlorophenylthio)-cAMP (CPT-cAMP)] and a phosphodiesterase inhibitor [3-isobutyl-1-methylxanthine (IBMX)] but not by a cGMP analogue (8-bromoguanosine 3′,5′-cyclic monophosphate). Perfusion of the adenylate cyclase inhibitor (SQ22536) abolished the effect of serotonin but not that of octopamine. To investigate the site of action of each biogenic amines in the neural circuit meditating LG escape, the effect of drugs on directly and indirectly elicited postsynaptic potentials in LG was investigated. Serotonin, octopamine, and a mixture of CPT-cAMP and IBMX increased both the direct and indirect synaptic inputs. Simultaneous application of SQ22536 abolished the effect of serotonin on both inputs but did not block the effect of octopamine. Direct injection of the cAMP analogue (Sp-isomer of adenosine-3′,5′-cyclic monophosphorothioate) into LG increased both the direct and indirect inputs to LG. These results indicate that serotonin mediates an increase in cAMP levels in LG, but octopamine acts independently of cAMP and cGMP.


2021 ◽  
pp. 1-11
Author(s):  
Chifaou Abdallah ◽  
Hélène Brissart ◽  
Sophie Colnat-Coulbois ◽  
Ludovic Pierson ◽  
Olivier Aron ◽  
...  

OBJECTIVEIn drug-resistant temporal lobe epilepsy (TLE) patients, the authors evaluated early and late outcomes for decline in visual object naming after dominant temporal lobe resection (TLR) according to the resection status of the basal temporal language area (BTLA) identified by cortical stimulation during stereoelectroencephalography (SEEG).METHODSTwenty patients who underwent SEEG for drug-resistant TLE met the inclusion criteria. During language mapping, a site was considered positive when stimulation of two contiguous contacts elicited at least one naming impairment during two remote sessions. After TLR ipsilateral to their BTLA, patients were classified as BTLA+ when at least one positive language site was resected and as BTLA− when all positive language sites were preserved. Outcomes in naming and verbal fluency tests were assessed using pre- and postoperative (means of 7 and 25 months after surgery) scores at the group level and reliable change indices (RCIs) for clinically meaningful changes at the individual level.RESULTSBTLA+ patients (n = 7) had significantly worse naming scores than BTLA− patients (n = 13) within 1 year after surgery but not at the long-term evaluation. No difference in verbal fluency tests was observed. When RCIs were used, 5 of 18 patients (28%) had naming decline within 1 year postoperatively (corresponding to 57% of BTLA+ and 9% of BTLA− patients). A significant correlation was found between BTLA resection and naming decline.CONCLUSIONSBTLA resection is associated with a specific and early naming decline. Even if this decline is transient, naming scores in BTLA+ patients tend to remain lower compared to their baseline. SEEG mapping helps to predict postoperative language outcome after dominant TLR.


1989 ◽  
Vol 256 (5) ◽  
pp. H1450-H1461 ◽  
Author(s):  
R. B. Kleiman ◽  
S. R. Houser

The properties of the inward rectifier K current (IK1) and the delayed rectifier K current (IK) were studied in single feline myocytes isolated from the right ventricle of normal cats and cats with experimentally induced right ventricular hypertrophy (RVH). IK1 demonstrated time-dependent decay during hyperpolarizations and showed inward rectification with a prominent negative-slope region between -30 and -10 mV. Both IK1 and IK was carried primarily by K ions. The activation of IK during depolarizations followed a monoexponential time course, whereas the deactivation of IK tail currents was either mono- or biexponential depending on the repolarization potential. IK showed marked rectification at positive potentials. A comparison of these currents in normal and hypertrophy myocytes revealed that in RVH the magnitude of IK1 is increased, whereas the magnitude of IK is decreased. IK showed steeper rectification, had slower activation, and had more rapid deactivation in RVH. These abnormalities of the IK may contribute to the prolongation of action potential duration, which characterizes pressure-overload cardiac hypertrophy.


Sign in / Sign up

Export Citation Format

Share Document