scholarly journals Influence of Contrast on Orientation and Temporal Frequency Tuning in Ferret Primary Visual Cortex

2004 ◽  
Vol 91 (6) ◽  
pp. 2797-2808 ◽  
Author(s):  
Henry J. Alitto ◽  
W. Martin Usrey

Neurons in primary visual cortex are highly sensitive to the contrast, orientation, and temporal frequency of a visual stimulus. These three stimulus properties can be varied independently of one another, raising the question of how they interact to influence neuronal responses. We recorded from individual neurons in ferret primary visual cortex to determine the influence of stimulus contrast on orientation tuning, temporal-frequency tuning, and latency to visual response. Results show that orientation-tuning bandwidth is not affected by contrast level. Thus neurons in ferret visual cortex display contrast-invariant orientation tuning. Stimulus contrast does, however, influence the structure of orientation-tuning curves as measures of circular variance vary inversely with contrast for both simple and complex cells. This change in circular variance depends, in part, on a contrast-dependent change in the ratio of null to preferred orientation responses. Stimulus contrast also has an influence on the temporal-frequency tuning of cortical neurons. Both simple and complex cells display a contrast-dependent rightward shift in their temporal frequency-tuning curves that results in an increase in the highest temporal frequency needed to produce a half-maximum response (TF50). Results show that the degree of the contrast-dependent increase in TF50 is similar for cortical neurons and neurons in the lateral geniculate nucleus (LGN) and indicate that subcortical mechanisms likely play a major role in establishing the degree of effect displayed by downstream neurons. Finally, results show that LGN and cortical neurons experience a contrast-dependent phase advance in their visual response. This phase advance is most pronounced for cortical neurons indicating a role for both subcortical and cortical mechanisms.

Some computational theories of motion perception assume that the first stage en route to this perception is the local estimate of image velocity. However, this assumption is not supported by data from the primary visual cortex. Its motion sensitive cells are not selective to velocity, but rather are directionally selective and tuned to spatio-temporal frequen­cies. Accordingly, physiologically based theories start with filters selec­tive to oriented spatio-temporal frequencies. This paper shows that computational and physiological theories do not necessarily conflict, because such filters may, as a population, compute velocity locally. To prove this point, we show how to combine the outputs of a class of frequency tuned filters to detect local image velocity. Furthermore, we show that the combination of filters may simulate ‘Pattern’ cells in the middle temporal area (MT), whereas each filter simulates primary visual cortex cells. These simulations include three properties of the primary cortex. First, the spatio-temporal frequency tuning curves of the in­dividual filters display approximate space-time separability. Secondly, their direction-of-motion tuning curves depend on the distribution of orientations of the components of the Fourier decomposition and speed of the stimulus. Thirdly, the filters show facilitation and suppression for responses to apparent motions in the preferred and null directions, respect­ively. It is suggested that the MT’s role is not to solve the aperture problem, but to estimate velocities from primary cortex information. The spatial integration that accounts for motion coherence may be postponed to a later cortical stage.


2005 ◽  
Vol 94 (2) ◽  
pp. 1336-1345 ◽  
Author(s):  
Bartlett D. Moore ◽  
Henry J. Alitto ◽  
W. Martin Usrey

The activity of neurons in primary visual cortex is influenced by the orientation, contrast, and temporal frequency of a visual stimulus. This raises the question of how these stimulus properties interact to shape neuronal responses. While past studies have shown that the bandwidth of orientation tuning is invariant to stimulus contrast, the influence of temporal frequency on orientation-tuning bandwidth is unknown. Here, we investigate the influence of temporal frequency on orientation tuning and direction selectivity in area 17 of ferret visual cortex. For both simple cells and complex cells, measures of orientation-tuning bandwidth (half-width at half-maximum response) are ∼20–25° across a wide range of temporal frequencies. Thus cortical neurons display temporal-frequency invariant orientation tuning. In contrast, direction selectivity is typically reduced, and occasionally reverses, at nonpreferred temporal frequencies. These results show that the mechanisms contributing to the generation of orientation tuning and direction selectivity are differentially affected by the temporal frequency of a visual stimulus and support the notion that stability of orientation tuning is an important aspect of visual processing.


2021 ◽  
Author(s):  
Logan Chariker ◽  
Robert Shapley ◽  
Michael Hawken ◽  
Lai-Sang Young

This paper offers a new theory for the origin of direction selectivity in the Macaque primary visual cortex, V1. Direction selectivity (DS) is essential for the perception of motion and control of pursuit eye movements. In the Macaque visual pathway, DS neurons first appear in V1, in the Simple cell population of the Magnocellular input layer 4Ca. The LGN cells that project to these cortical neurons, however, are not direction-selective. We hypothesize that DS is initiated in feedforward LGN input, in the summed responses of LGN cells afferent to a cortical cell, and it is achieved through the interplay of (a) different visual response dynamics of ON and OFF LGN cells, and (b) the wiring of ON and OFF LGN neurons to cortex. We identify specific temporal differences in the ON/OFF pathways that together with (b) produce distinct response time-courses in separated subregions; analysis and simulations confirm the efficacy of the mechanisms proposed. To constrain the theory, we present data on Simple cells in layer 4Ca in response to drifting gratings. About half of the cells were found to have high DS, and the DS was broad-band in spatial and temporal frequency (SF and TF). The proposed theory includes a complete analysis of how stimulus features such as SF and TF interact with ON/OFF dynamics and LGN-to-cortex wiring to determine the preferred direction and magnitude of DS.


2021 ◽  
Vol 118 (32) ◽  
pp. e2105062118
Author(s):  
Logan Chariker ◽  
Robert Shapley ◽  
Michael Hawken ◽  
Lai-Sang Young

This paper offers a theory for the origin of direction selectivity (DS) in the macaque primary visual cortex, V1. DS is essential for the perception of motion and control of pursuit eye movements. In the macaque visual pathway, neurons with DS first appear in V1, in the Simple cell population of the Magnocellular input layer 4Cα. The lateral geniculate nucleus (LGN) cells that project to these cortical neurons, however, are not direction selective. We hypothesize that DS is initiated in feed-forward LGN input, in the summed responses of LGN cells afferent to a cortical cell, and it is achieved through the interplay of 1) different visual response dynamics of ON and OFF LGN cells and 2) the wiring of ON and OFF LGN neurons to cortex. We identify specific temporal differences in the ON/OFF pathways that, together with item 2, produce distinct response time courses in separated subregions; analysis and simulations confirm the efficacy of the mechanisms proposed. To constrain the theory, we present data on Simple cells in layer 4Cα in response to drifting gratings. About half of the cells were found to have high DS, and the DS was broadband in spatial and temporal frequency (SF and TF). The proposed theory includes a complete analysis of how stimulus features such as SF and TF interact with ON/OFF dynamics and LGN-to-cortex wiring to determine the preferred direction and magnitude of DS.


2005 ◽  
Vol 94 (2) ◽  
pp. 1645-1650 ◽  
Author(s):  
Baowang Li ◽  
Matthew R. Peterson ◽  
Jeffrey K. Thompson ◽  
Thang Duong ◽  
Ralph D. Freeman

The response of a cell in the primary visual cortex to an optimally oriented grating is suppressed by a superimposed orthogonal grating. This cross-orientation suppression (COS) is exhibited when the orthogonal and optimal stimuli are presented to the same eye (monoptically) or to different eyes (dichoptically). A recent study suggested that monoptic COS arises from subcortical processes; however, the mechanisms underlying dichoptic COS were not addressed. We have compared the temporal frequency tuning and stimulus adaptation properties of monoptic and dichoptic COS. We found that dichoptic COS is best elicited with lower temporal frequencies and is substantially reduced after prolonged adaptation to a mask grating. In contrast, monoptic COS is more pronounced with mask gratings at much higher temporal frequencies and is less prone to stimulus adaptation. These results suggest that monoptic COS is mediated by subcortical mechanisms, whereas intracortical inhibition is the mechanism for dichoptic COS.


2021 ◽  
Vol 15 ◽  
Author(s):  
Tushar Chauhan ◽  
Timothée Masquelier ◽  
Benoit R. Cottereau

The early visual cortex is the site of crucial pre-processing for more complex, biologically relevant computations that drive perception and, ultimately, behaviour. This pre-processing is often studied under the assumption that neural populations are optimised for the most efficient (in terms of energy, information, spikes, etc.) representation of natural statistics. Normative models such as Independent Component Analysis (ICA) and Sparse Coding (SC) consider the phenomenon as a generative, minimisation problem which they assume the early cortical populations have evolved to solve. However, measurements in monkey and cat suggest that receptive fields (RFs) in the primary visual cortex are often noisy, blobby, and symmetrical, making them sub-optimal for operations such as edge-detection. We propose that this suboptimality occurs because the RFs do not emerge through a global minimisation of generative error, but through locally operating biological mechanisms such as spike-timing dependent plasticity (STDP). Using a network endowed with an abstract, rank-based STDP rule, we show that the shape and orientation tuning of the converged units are remarkably close to single-cell measurements in the macaque primary visual cortex. We quantify this similarity using physiological parameters (frequency-normalised spread vectors), information theoretic measures [Kullback–Leibler (KL) divergence and Gini index], as well as simulations of a typical electrophysiology experiment designed to estimate orientation tuning curves. Taken together, our results suggest that compared to purely generative schemes, process-based biophysical models may offer a better description of the suboptimality observed in the early visual cortex.


2000 ◽  
Vol 84 (2) ◽  
pp. 909-926 ◽  
Author(s):  
Jeffrey S. Anderson ◽  
Matteo Carandini ◽  
David Ferster

The input conductance of cells in the cat primary visual cortex (V1) has been shown recently to grow substantially during visual stimulation. Because increasing conductance can have a divisive effect on the synaptic input, theoretical proposals have ascribed to it specific functions. According to the veto model, conductance increases would serve to sharpen orientation tuning by increasing most at off-optimal orientations. According to the normalization model, conductance increases would control the cell's gain, by being independent of stimulus orientation and by growing with stimulus contrast. We set out to test these proposals and to determine the visual properties and possible synaptic origin of the conductance increases. We recorded the membrane potential of cat V1 cells while injecting steady currents and presenting drifting grating patterns of varying contrast and orientation. Input conductance grew with stimulus contrast by 20–300%, generally more in simple cells (40–300%) than in complex cells (20–120%), and in simple cells was strongly modulated in time. Conductance was invariably maximal for stimuli of the preferred orientation. Thus conductance changes contribute to a gain control mechanism, but the strength of this gain control does not depend uniquely on contrast. By assuming that the conductance changes are entirely synaptic, we further derived the excitatory and inhibitory synaptic conductances underlying the visual responses. In simple cells, these conductances were often arranged in push-pull: excitation increased when inhibition decreased and vice versa. Excitation and inhibition had similar preferred orientations and did not appear to differ in tuning width, suggesting that the intracortical synaptic inputs to simple cells of cat V1 originate from cells with similar orientation tuning. This finding is at odds with models where orientation tuning in simple cells is achieved by inhibition at off-optimal orientations or sharpened by inhibition that is more broadly tuned than excitation.


Author(s):  
Sareh Rostami ◽  
◽  
Amin Asgharzadeh Alvar ◽  
Parviz Ghaderi ◽  
Leila Dargahi ◽  
...  

Introduction: Sensory processing is profoundly regulated by brain neuromodulatory systems. One of the main neuromodulators is serotonin which influences higher cognitive functions such as different aspects of perceptual processing. So, malfunction in the serotonergic system may lead to visual illusion in psychiatric disorders such as autism and schizophrenia. In this work, we examined the serotonergic modulation of visual responses of neurons to stimulus orientation in the primary visual cortex. Methods: Eight-weeks old naive mice were anesthetized and craniotomy was done on the region of interest in primary visual cortex. Spontaneous and visual-evoked activities of neurons were recorded before and during the electrical stimulation of dorsal raphe nucleus using in vivo whole-cell patch-clamp recording. Square-wave grating of 12 orientations was presented. Data was analyzed and Wilcoxon signed-rank test, used in order to compare the data of two conditions that belong to the same neurons, with or without electrical stimulation. Results: The serotonergic system changed orientation tuning of about 60 % recorded neurons by decreasing the mean firing rate in two independent visual response components: gain and baseline response. It also increased mean firing rate in a small number of neurons (about 20%). Beyond that, it left the preferred orientation and sensitivity of neurons unchanged. Conclusion: However, serotonergic modulation showed a bi-directional effect; it seems to cause predominately divisive and subtractive decreases in the visual responses of the neurons in the primary visual cortex that can modify the balance between internal and external sensory signals and result in disorders.


2005 ◽  
Vol 94 (1) ◽  
pp. 775-787 ◽  
Author(s):  
Tanya I. Baker ◽  
Naoum P. Issa

In the earliest cortical stages of visual processing, a scene is represented in different functional domains selective for specific features. Maps of orientation and spatial frequency preference have been described in the primary visual cortex using simple sinusoidal grating stimuli. However, recent imaging experiments suggest that the maps of these two spatial parameters are not sufficient to describe patterns of activity in different orientation domains generated in response to complex, moving stimuli. A model of cortical organization is presented in which cortical temporal frequency tuning is superimposed on the maps of orientation and spatial frequency tuning. The maps of these three tuning properties are sufficient to describe the activity in orientation domains that have been measured in response to drifting complex images. The model also makes specific predictions about how moving images are represented in different spatial frequency domains. These results suggest that the tangential organization of primary visual cortex can be described by a set of maps of separable neuronal receptive field features including maps of orientation, spatial frequency, and temporal frequency tuning properties.


Sign in / Sign up

Export Citation Format

Share Document