Odor-induced currents in Xenopus olfactory receptor cells measured with perforated-patch recording

1995 ◽  
Vol 74 (1) ◽  
pp. 479-483 ◽  
Author(s):  
A. B. Zhainazarov ◽  
B. W. Ache

1. Odor-evoked currents were recorded in Xenopus laevis olfactory receptor neurons (ORNs) by the use of conventional, as well as nystatin and gramicidin-perforated, whole cell recording. The odor-evoked current ran down quickly in conventional, but not in perforated, whole cell recording. All three types of recording gave similar values for the amplitude, latency, time-to-peak, recovery time, and reversal potential of the odor-evoked current. 2. A secondary Cl current comprised a significant part of the odor-evoked current (55-65%). ECl measured by gramicidin perforation, which does not alter [Cl-]i, was -2.3 +/- 5.0 (SE) mV, indicating that these neurons maintain a high [Cl-]i and that the secondary Cl current plays an excitatory role in olfactory transduction.

1992 ◽  
Vol 99 (3) ◽  
pp. 415-433 ◽  
Author(s):  
V E Dionne

Olfactory receptor neurons were isolated without enzymes from the mudpuppy, Necturus maculosus, and tested for chemosensitivity. The cells responded to odorants with changes in firing frequency and alterations in excitability that were detected with tight-seal patch electrodes using on-cell and whole-cell recording conditions. Chemosensitive cells exhibited two primary response characteristics: excitation and inhibition. Both types of primary response were observed in different cells stimulated by mixtures of amino acids as well as by the single compound L-alanine, suggesting that there may be more than one transduction pathway for some odorants. Using the normal whole-cell recording method, the chemosensitivity of competent cells washed out rapidly; a resistive whole-cell method was used to record odorant responses under current-clamp conditions. In response to chemical stimulation, excitability appeared to be modulated in several different ways in different cells: odorants induced hyperpolarizing or depolarizing receptor potentials, elicited or inhibited transient, rhythmic generator potentials, and altered excitability without changing the membrane potential or input resistance. These effects suggest that olfactory transduction is mediated through at least three different pathways with effects on four or more components of the membrane conductance. Polychotomous pathways such as these may be important for odor discrimination and for sharpening the "odor image" generated in the olfactory epithelium.


1990 ◽  
Vol 258 (2) ◽  
pp. C234-C242 ◽  
Author(s):  
C. Smith-Maxwell ◽  
E. Bennett ◽  
J. Randles ◽  
G. A. Kimmich

Gigaohm-seal whole cell recording techniques were used to monitor function of the Na(+)-coupled sugar transport system in LLC-PK1 cells. The currents coupled to sugar transport were identified as those that are induced by the presence of 10 mM alpha-methylglucoside (AMG) in either the extracellular or intracellular compartment and were inhibited by addition of 320-800 microM phlorizin to the extracellular bathing medium. The sugar-induced currents are small, 15-20 pA, but of the expected magnitude as determined from the known kinetic parameters for Na(+)-coupled sugar transport in LLC-PK1 cells. The phlorizin-sensitive currents are Na+ dependent and can be studied under conditions in which the net Na+ and sugar flux (and consequently the Na+ electrical current) is in either the inward or outward direction. The reversal potential of the sugar-induced currents measured under conditions with high Na+ and AMG concentrations inside the cell is close to values predicted from thermodynamic principles, assuming a coupling stoichiometry of 2 Na+: 1 sugar for the transport system. The reversal potential of the sugar-induced currents with high extracellular Na+ and AMG is not equal to the predicted value, but it is of the polarity expected for inward-imposed solute gradients. Reasons for the observed discrepancy between observed and calculated values are discussed.


1995 ◽  
Vol 73 (2) ◽  
pp. 562-567 ◽  
Author(s):  
S. Firestein ◽  
G. M. Shepherd

1. We recorded odor-induced currents from isolated olfactory receptor neurons of the land phase tiger salamander (Ambystoma tigrinum) with the whole cell patch clamp. 2. In a subset of cells the current-voltage relation for the odor-induced current showed a strong rectification with, in some cells, a negative resistance slope between about -45 and -25 mV. In these cells there was little or no odor-induced current at -55 mV, the average resting potential of olfactory neurons. 3. Depolarizing the membrane to +20 mV revealed a large outward current, and on repolarizing the membrane to -55 mV we could observe a large inward current. This current was not observed in the absence of the depolarizing step or in the absence of odor stimuli. 4. This odor-induced tail current was dependent on extracellular Ca2+ and voltage, activating with increased depolarization. The reversal potential was sensitive to the chloride equilibrium potential and it could be significantly blocked by niflumic acid, a blocker of calcium-activated chloride currents. The voltage dependence could result from either the voltage-dependent block of adenosine 3',5'-cyclic monophosphate-gated cation channels known to be activated by odorants and permeable to Ca2+, or from an inherent voltage dependence in the chloride channel gating. 5. The current appears to function as a regenerative mechanism that might increase the amplitude and duration of the odor-induced current, especially to low concentrations of stimulus.


2007 ◽  
Vol 97 (2) ◽  
pp. 1052-1057 ◽  
Author(s):  
Y. V. Bobkov ◽  
B. W. Ache

Rhythmically bursting neurons are fundamental to neuronal network function but typically are not considered in the context of primary sensory signaling. We now report intrinsically bursting lobster primary olfactory receptor neurons that respond to odors with a phase-dependent burst of action potentials. Rhythmic odor input as might be generated by sniffing entrains the intrinsic bursting rhythm in a concentration-dependent manner and presumably synchronizes the ensemble of bursting cells. We suggest such intrinsically bursting olfactory receptor cells provide a novel way for encoding odor information.


1998 ◽  
Vol 80 (3) ◽  
pp. 1268-1276 ◽  
Author(s):  
Frank S. Corotto ◽  
William C. Michel

Corotto, Frank S. and William C. Michel. Mechanisms of afterhyperpolarization in lobster olfactory receptor neurons. J. Neurophysiol. 80: 1268–1276, 1998. In lobster olfactory receptor neurons (ORNs), depolarizing responses to odorants and current injection are accompanied by the development of an afterhyperpolarization (AHP) that likely contributes to spike-frequency adaptation and that persists for several seconds after termination of the response. A portion of the AHP can be blocked by extracellular application of 5 mM CsCl. At this concentration, CsCl specifically blocks the hyperpolarization-activated cation current ( I h) in lobster ORNs. This current is likely to be active at rest, where it provides a constant, depolarizing influence. Further depolarization deactivates I h, thus allowing the cell to be briefly hyperpolarized when that depolarizing influence is removed, thus generating an AHP. Reactivation of I h would terminate the AHP. The component of the AHP that could not be blocked by Cs+ (the Cs+-insensitive AHP) was accompanied by decreased input resistance, suggesting that this component is generated by increased conductance to an ion with an equilibrium potential more negative than the resting potential. The Cs+-insensitive AHP in current clamp and the underlying current in voltage clamp displayed a reversal potential of approximately –75 mV. Both E K and E Cl are predicted to be in this range. Similar results were obtained with the use of a high Cl– pipette solution, although that shifted E Cl from –72 mV to –13 mV. However, when E K was shifted to more positive or negative values, the reversal potential also shifted accordingly. A role for the Ca2+-mediated K+ current in generating the Cs+-independent AHP was explored by testing cells in current and voltage clamp while blocking I K(Ca) with Cs+/Co2+-saline. In some cells, the Cs+-independent AHP and its underlying current could be completely and reversibly blocked by Cs+/Co2+ saline, whereas in other cells some fraction of it remained. This indicates that the Cs+-independent AHP results from two K+ currents, one that requires an influx of extracellular Ca2+ and one that does not. Collectively, these findings indicate that AHPs result from three phenomena that occur when lobster ORNs are depolarized: 1) inactivation of the hyperpolarization-activated cation current, 2) activation of a Ca2+-mediated K+ current, and 3) activation of a K+ current that does not require influx of extracellular Ca2+. Roles of these processes in modulating the output of lobster ORNs are discussed.


Sign in / Sign up

Export Citation Format

Share Document