Erroneous Peaks in Energy Dispersive X-Ray Spectra

1975 ◽  
Vol 19 ◽  
pp. 161-165
Author(s):  
J. C. Russ

The necessary first step in using an x-ray fluorescence spectrometer for quantitative analysis is to obtain the intensities for the various elements. With a wavelength dispersive system this usually requires simply setting the crystal to the proper angle (and possibly adjusting the pulse height selector) and making a dead-time correction. With the energy dispersive x-ray fluorescence analyzer it is necessary to take into account the presence of erroneous peaks in the spectrum, to obtain true intensity values.False peaks due to diffraction of white tube radiation from the sample can usually be shifted to portions of the energy spectrum where they do not interfere with emission lines of interest by selection of the proper tube-sample-detector geometry. Modern amplifier design provides a built – in dead time correction and greatly reduces the effects of pulse-pile-up, although the latter phenomenon will still produce small peaks at exact multiples of major peaks.

2018 ◽  
Vol 25 (2) ◽  
pp. 484-495 ◽  
Author(s):  
Suelen F. Barros ◽  
Vito R. Vanin ◽  
Alexandre A. Malafronte ◽  
Nora L. Maidana ◽  
Marcos N. Martins

Dead-time effects in X-ray spectra taken with a digital pulse processor and a silicon drift detector were investigated when the number of events at the low-energy end of the spectrum was more than half of the total, at counting rates up to 56 kHz. It was found that dead-time losses in the spectra are energy dependent and an analytical correction for this effect, which takes into account pulse pile-up, is proposed. This and the usual models have been applied to experimental measurements, evaluating the dead-time fraction either from the calculations or using the value given by the detector acquisition system. The energy-dependent dead-time model proposed fits accurately the experimental energy spectra in the range of counting rates explored in this work. A selection chart of the simplest mathematical model able to correct the pulse-height distribution according to counting rate and energy spectrum characteristics is included.


1968 ◽  
Author(s):  
D J Reed ◽  
A H Gillieson

1976 ◽  
Vol 5 (4) ◽  
pp. 194-196 ◽  
Author(s):  
Charles S. Hutchison

Author(s):  
Y. Sato ◽  
T. Hashimoto ◽  
M. Ichihashi ◽  
Y. Ueki ◽  
K. Hirose ◽  
...  

Analytical TEMs have two variations in x-ray detector geometry, high and low angle take off. The high take off angle is advantageous for accuracy of quantitative analysis, because the x rays are less absorbed when they go through the sample. The low take off angle geometry enables better sensitivity because of larger detector solid angle.Hitachi HF-2000 cold field emission TEM has two versions; high angle take off and low angle take off. The former allows an energy dispersive x-ray detector above the objective lens. The latter allows the detector beside the objective lens. The x-ray take off angle is 68° for the high take off angle with the specimen held at right angles to the beam, and 22° for the low angle take off. The solid angle is 0.037 sr for the high angle take off, and 0.12 sr for the low angle take off, using a 30 mm2 detector.


Sign in / Sign up

Export Citation Format

Share Document