scholarly journals Monte Carlo Simulations of Intersubband Hole Relaxation in a GaAs/AlAs Quantum Well

VLSI Design ◽  
1998 ◽  
Vol 8 (1-4) ◽  
pp. 367-373
Author(s):  
R. W. Kelsall

An ensemble Monte Carlo code has been developed for the simulation of hole relaxation processes in a GaAs/AlAs quantum well. The code includes a realistic k.p model of the valence subbands and corresponding wavefunctions. Intra- and inter-subband phonon scattering rates are calculated for polar and non-polar interactions via both optical and acoustic modes. The code is used to simulate the cooling of non-equilibrium photogenerated hole populations. A lifetime of 90 fs is extracted for optical phonon mediated depopulation of the 4th subband at 77K. By contrast, the 2nd subband exhibits fast re-population, but slow de-population, with extracted lifetimes of up to 160 ps. The slow depopulation is attributed to the small energy separation of the 1st and 2nd subbands (less than the optical phonon energy) and the large density of states in the 2nd subband off-zone-centre minimum.

2000 ◽  
Vol 114 (2) ◽  
pp. 101-106 ◽  
Author(s):  
Wenhui Duan ◽  
Jia-Lin Zhu ◽  
Bing-Lin Gu ◽  
Jian Wu

1999 ◽  
Vol 4 (S1) ◽  
pp. 781-786
Author(s):  
E. Bellotti ◽  
B. Doshi ◽  
K. F. Brennan ◽  
P. P. Ruden

Ensemble Monte Carlo calculations of electron transport at high applied electric field strengths in bulk, wurtzite phase InN are presented. The calculations are performed using a full band Monte Carlo simulation that includes a pseudopotential band structure, all of the relevant phonon scattering agents, and numerically derived impact ionization transition rates. The full details of the first five conduction bands, which extend in energy to about 8 eV above the conduction band minimum, are included in the simulation. The electron initiated impact ionization coefficients and quantum yield are calculated using the full band Monte Carlo model. Comparison is made to previous calculations for bulk GaN and ZnS. It is found that owing to the narrower band gap in InN, a lower breakdown field exists than in either GaN or ZnS.


1996 ◽  
Vol 74 (S1) ◽  
pp. 220-224
Author(s):  
B. Reid ◽  
M. Abou-Khalil ◽  
R. Maciejko

Using a bipolar ensemble Monte Carlo coupled with a Poisson equation solver, we simulate, for the first time, carrier capture with both types of carriers in an InGaAs/InP-doped single quantum well, following femtosecond light-pulse excitation. We show that Coulomb interaction between electrons and holes is very efficient in keeping the capture ambipolar for a long time. However, for short times, the capture is unipolar. Our results indicate that for these kinds of experiments, Monte Carlo simulations with only one type of carrier give questionable results.


1998 ◽  
Vol 537 ◽  
Author(s):  
E. Bellotti ◽  
B. Doshi ◽  
K. F. Brennan ◽  
P. P. Ruden

AbstractEnsemble Monte Carlo calculations of electron transport at high applied electric field strengths in bulk, wurtzite phase InN are presented. The calculations are performed using a full band Monte Carlo simulation that includes a pseudopotential band structure, all of the relevant phonon scattering agents, and numerically derived impact ionization transition rates. The full details of the first five conduction bands, which extend in energy to about 8 eV above the conduction band minimum, are included in the simulation. The electron initiated impact ionization coefficients and quantum yield are calculated using the full band Monte Carlo model. Comparison is made to previous calculations for bulk GaN and ZnS. It is found that owing to the narrower band gap in InN, a lower breakdown field exists than in either GaN or ZnS.


2000 ◽  
Vol 622 ◽  
Author(s):  
E. Bellotti ◽  
M. Farahmand ◽  
H.-E Nilsson ◽  
K. F. Brennan ◽  
P. P. Ruden

ABSTRACTWe present Monte Carlo based calculations of transport parameters useful in the simulation of III-nitride and SiC based devices. The calculations are performed using a full band ensemble Monte Carlo model that includes numerical formulations of the phonon scattering rates and impact ionization transition rates. Calculations are made for the wurtzite and zincblende phases of GaN, the wurtzite phase of InN, and the 3C (cubic) and 4H phases of SiC. The basic transport parameters determined are saturation drift velocity, and the ionization coefficients as a function of applied electric field. Results from the various materials are finally compared.


Sign in / Sign up

Export Citation Format

Share Document