scholarly journals Evidence for a Potential Role of Metallothioneins in Inflammatory Bowel Diseases

2009 ◽  
Vol 2009 ◽  
pp. 1-9 ◽  
Author(s):  
Anouk Waeytens ◽  
Martine De Vos ◽  
Debby Laukens

Inflammatory bowel diseases (IBDs) are a group of chronic, relapsing, immune-mediated disorders of the intestine, including Crohn's disease and ulcerative colitis. Recent studies underscore the importance of the damaged epithelial barrier and the dysregulated innate immune system in their pathogenesis. Metallothioneins (MTs) are a family of small proteins with a high and conserved cysteine content that are rapidly upregulated in response to an inflammatory stimulus. Herein, we review the current knowledge regarding the expression and potential role of MTs in IBD. MTs exert a central position in zinc homeostasis, modulate the activation of the transcription factor nuclear factor (NF)-B, and serve as antioxidants. In addition, MTs could be involved in IBD through their antiapoptotic effects or through specific immunomodulating extracellular effects. Reports on MT expression in IBD are contradictory but clearly demonstrate a deviant MT expression supporting the idea that these aberrations in IBD require further clarification.

Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1111 ◽  
Author(s):  
Anaïs Larabi ◽  
Nicolas Barnich ◽  
Hang Thi Thu Nguyen

To communicate with each other, cells release exosomes that transfer their composition, including lipids, proteins and nucleic acids, to neighboring cells, thus playing a role in various pathophysiological processes. During an infection with pathogenic bacteria, such as adherent-invasive E. coli (AIEC) associated with Crohn disease, exosomes secreted by infected cells can have an impact on the innate immune responses of surrounding cells to infection. Furthermore, inflammation can be amplified via the exosomal shuttle during infection with pathogenic bacteria, which could contribute to the development of the associated disease. Since these vesicles can be released in various biological fluids, changes in exosomal content may provide a means for the identification of non-invasive biomarkers for infectious and inflammatory bowel diseases. Moreover, evidence suggests that exosomes could be used as vaccines to prime the immune system to recognize and kill invading pathogens, and as therapeutic components relieving intestinal inflammation. Here, we summarize the current knowledge on the role of exosomes in bacterial infections and highlight their potential use as biomarkers, vaccines and conveyers of therapeutic molecules in inflammatory bowel diseases.


2017 ◽  
Vol 8 ◽  
Author(s):  
Bárbara M. Schultz ◽  
Carolina A. Paduro ◽  
Geraldyne A. Salazar ◽  
Francisco J. Salazar-Echegarai ◽  
Valentina P. Sebastián ◽  
...  

2021 ◽  
Vol 10 (4) ◽  
pp. 853
Author(s):  
Giuseppe Privitera ◽  
Daniela Pugliese ◽  
Gian Ludovico Rapaccini ◽  
Antonio Gasbarrini ◽  
Alessandro Armuzzi ◽  
...  

Inflammatory bowel diseases (IBD) are chronic conditions that primarily affect the gastrointestinal tract, with a complex pathogenesis; they are characterized by a significant heterogeneity of clinical presentations and of inflammatory pathways that sustain intestinal damage. After the introduction of the first biological therapies, the pipeline of therapies for IBD has been constantly expanding, and a significant number of new molecules is expected in the next few years. Evidence from clinical trials and real-life experiences has taught us that up to 40% of patients do not respond to a specific drug. Unfortunately, to date, clinicians lack a valid tool that can predict each patient’s response to therapies and that could help them in choosing what drug to administer. Several candidate biomarkers have been investigated so far, with conflicting results: clinical, genetic, immunological, pharmacokinetic and microbial markers have been tested, but no ideal marker has been identified so far. Based on recent evidence, multiparametric models seemingly hold the greatest potential for predicting response to therapy. In this narrative review, we aim to summarize the current knowledge on predictors and early markers of response to biological therapies in IBD.


2021 ◽  
Vol 9 (4) ◽  
pp. 697
Author(s):  
Valerio Baldelli ◽  
Franco Scaldaferri ◽  
Lorenza Putignani ◽  
Federica Del Chierico

Inflammatory bowel diseases (IBDs) are a group of chronic gastrointestinal inflammatory diseases with unknown etiology. There is a combination of well documented factors in their pathogenesis, including intestinal microbiota dysbiosis. The symbiotic microbiota plays important functions in the host, and the loss of beneficial microbes could favor the expansion of microbial pathobionts. In particular, the bloom of potentially harmful Proteobacteria, especially Enterobacteriaceae, has been described as enhancing the inflammatory response, as observed in IBDs. Herein, we seek to investigate the contribution of Enterobacteriaceae to IBD pathogenesis whilst considering the continuous expansion of the literature and data. Despite the mechanism of their expansion still remaining unclear, their expansion could be correlated with the increase in nitrate and oxygen levels in the inflamed gut and with the bile acid dysmetabolism described in IBD patients. Furthermore, in several Enterobacteriaceae studies conducted at a species level, it has been suggested that some adherent-invasive Escherichia coli (AIEC) play an important role in IBD pathogenesis. Overall, this review highlights the pivotal role played by Enterobacteriaceae in gut dysbiosis associated with IBD pathogenesis and progression.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Luca Pastorelli ◽  
Elena Dozio ◽  
Laura Francesca Pisani ◽  
Massimo Boscolo-Anzoletti ◽  
Elena Vianello ◽  
...  

Inflammatory and immune mediated disorders are risk factors for arterial and venous thromboembolism. Inflammatory bowel diseases (IBD) confer an even greater risk of thromboembolic events than other inflammatory conditions. It has been shown that IBD patients display defective intestinal barrier functions. Thus, pathogen-associated molecular patterns (PAMPs) coming from the intestinal bacterial burden might reach systemic circulation and activate innate immunity receptors on endothelial cells and platelets, promoting a procoagulative state. Aim of the study was to test this hypothesis, correlating the presence of circulating PAMPs with the activation of innate immune system and the activation of the coagulatory cascade in IBD patients. Specifically, we studied lipopolysaccharide (LPS), Toll-like receptor (TLR) 2, TLR4, and markers of activated coagulation (i.e., D-Dimer and prothrombin fragmentF1+2) in the serum and plasma of IBD patients. We found that LPS levels are increased in IBD and correlate with TLR4 concentrations; although a mild correlation between LPS and CRP levels was detected, clinical disease activity does not appear to influence circulating LPS. Instead, serum LPS correlates with both D-Dimer andF1+2measurements. Taken together, our data support the role of an impairment of intestinal barrier in triggering the activation of the coagulatory cascade in IBD.


Sign in / Sign up

Export Citation Format

Share Document