scholarly journals Neodymium-DopedTiO2with Anatase and Brookite Two Phases: Mechanism for Photocatalytic Activity Enhancement under Visible Light and the Role of Electron

2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Douga Nassoko ◽  
Yan-Fang Li ◽  
Jia-Lin Li ◽  
Xi Li ◽  
Ying Yu

Titanium dioxide (TiO2) doped with neodymium (Nd), one rare earth element, has been synthesized by a sol-gel method for the photocatalytic degradation of rhodamine-B under visible light. The prepared samples are characterized by X-ray diffractometer, Raman spectroscopy, UV-Vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, and Brunauer-Emmett-Teller measurement. The results indicate that the prepared samples have anatase and brookite phases. Additionally, Nd as Nd3+may enter into the lattice ofTiO2and the presence of Nd3+substantially enhances the photocatalytic activity ofTiO2under visible light. In order to further explore the mechanism of photocatalytic degradation of organic pollutant, photoluminescence spectrometer and scavenger addition method have been employed. It is found that hydroxide radicals produced by Nd-dopedTiO2under visible light are one of reactive species for Rh-B degradation and photogenerated electrons are mainly responsible for the formation of the reactive species.

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Qianzhi Xu ◽  
Xiuying Wang ◽  
Xiaoli Dong ◽  
Chun Ma ◽  
Xiufang Zhang ◽  
...  

S/Zn codoped TiO2nanomaterials were synthesized by a sol-gel method. X-ray diffraction, UV-vis diffuse reflectance spectroscopy, transmission electron microscopy, photoluminescence spectroscopy, and X-ray photoelectron spectroscopy were used to characterize the morphology, structure, and optical properties of the prepared samples. The introduction of Zn and S resulted in significant red shift of absorption edge for TiO2-based nanomaterials. The photocatalytic activity was evaluated by degrading reactive brilliant red X-3B solution under simulated sunlight irradiation. The results showed S/Zn codoped TiO2exhibited higher photocatalytic activity than pure TiO2and commercial P25, due to the photosynergistic effect of obvious visible light absorption, efficient separation of photoinduced charge carriers, and large surface area. Moreover, the content of Zn and S in the composites played important roles in photocatalytic activity of TiO2-based nanomaterials.


2011 ◽  
Vol 287-290 ◽  
pp. 1640-1645 ◽  
Author(s):  
Min Guang Fan ◽  
Zu Zeng Qin ◽  
Zi Li Liu ◽  
Tong Ming Su

A series of BixY(2-x)O3photocatalysts were successfully prepared by a solid-state reaction and were subsequently characterized by powder X-ray diffraction, UV-vis diffuse reflectance spectroscopy, and X-ray photoelectron spectroscopy (XPS). The UV-vis diffuse reflectance spectra revealed that the BixY(2-x)O3samples absorbed light in the visible-light range (400-800 nm). The XPS results indicated that active oxygen species were generated on the Bi1.8Y0.2O3surface, which displayed a higher photocatalytic activity. When using photocatalytic degradation molasses fermentation wastewater as a model reaction, the Bi1.8Y0.2O3showed higher photocatalytic activity in comparison to Bi0.2Y1.8O3under visible-light irradiation.


2018 ◽  
Vol 55 (4C) ◽  
pp. 277 ◽  
Author(s):  
Nguyen Thi Phuong Mai

In the present paper, photocatalytic degradation of paraquat using N-TiO2/SiO2 with different molar ratio of titanium: nitrogen (Ti:N) under visible light was investigated. The catalyst was prepared via immersed SiO2 in N-TiO2. N-TiO2 was synthesized by sol-gel method.  The N-TiO2/SiO2 catalyst was characterized using X-ray diffraction, UV diffuse reflectance spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy. The results from characterizations indicated that N-doped anatase TiO2 had a 20-25 nm size. Degradation of paraquat, at an initial concentration of 10 mg/L was determined by UV-Vis. Chemical oxygen demand (COD) was used for process performance. Based on the COD tests, the COD values in residual paraquat was lower than that in initial paraquat concentration after 8 hours illumination of visible light. Moreover, the experiment’s results indicated that 80% of paraquat was degraded within 8 h of illumination time. These results showed that N-TiO2/SiO2 with molar Ti:N=2:1 gives the highest degradation efficiency of paraquat under visible light. This catalyst was stable and reusable suggesting it can be applied to treat organic pollutant in water. 


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
T. Siva Rao ◽  
Teshome Abdo Segne ◽  
T. Susmitha ◽  
A. Balaram Kiran ◽  
C. Subrahmanyam

Photocatalytic activity of TiO2was studied by doping with magnesium (Mg2+-TiO2) with varying magnesium weight percentages ranging from 0.75–1.5 wt%. The doped and undoped samples were synthesized by sol-gel method and characterized by X-ray diffraction (XRD), N2adsorption-desorption (BET), X-ray photoelectron spectroscopy (XPS), UV-visible diffuse reflectance spectroscopy (DRS), and scanning electron microscopy (SEM). The XRD data has shown that anatase crystalline phase in Mg2+-TiO2catalysts, indicating that Mg2+ions did not influence the crystal patterns of TiO2. The presence of magnesium ions in TiO2matrix has been determined by XPS spectra. DRS spectra showed that there is a significant absorption shift towards the visible region for doped TiO2. The SEM images and BET results showed that doped catalyst has smaller particle size and highest surface area than undoped TiO2. The photocatalytic efficiency of the synthesized catalysts was investigated by the photocatalytic degradation of aqueous dichlorvos (DDVP) under visible light irradiation, and it was found that the Mg2+-doped catalysts have better catalytic activity than undoped TiO2. This can be attributed that there is a more efficient electron-hole creation in Mg2+-TiO2in visible light, contrary to undoped TiO2which can be excited only in UV irradiation. The effect of dopant concentration, pH of solution, dosage of catalysts, and initial pesticide concentration has been studied.


2017 ◽  
Vol 76 (8) ◽  
pp. 2120-2132 ◽  
Author(s):  
Q. Song ◽  
L. Li ◽  
N. Zhuo ◽  
H. N. Zhang ◽  
X. Chen ◽  
...  

Taking cetyltrimethylammonium bromide (CTAB) as the template and using TiO2 as the substrate, coral-globular-like composite Ag/TiO2-SnO2 (CTAB) was successfully synthesized by the sol–gel combined with a temperature-programmed treatment method. X-ray diffraction, scanning electron microscopy (SEM), UV–vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, SEM combined with X-ray energy dispersive spectroscopy, and N2 adsorption–desorption tests were employed to characterize samples' crystalline phase, chemical composition, morphology and surface physicochemical properties. Results showed that composites not only had TiO2 anatase structure, but also had some generated SnTiO4, and the silver species was metallic Ag0. Ag/TiO2-SnO2 (CTAB) possessed a coral-globular-like structure with nanosheets in large quantities. The photocatalytic activity of Ag/TiO2-SnO2 (CTAB) had studied by degrading organic dyes under multi-modes, mainly using rhodamine B as the model molecule. Results showed that the coral-globular-like Ag/TiO2-SnO2 (CTAB) was higher photocatalytic activity than that of commercial TiO2, Ag/TiO2-SnO2, TiO2-SnO2 (CTAB), and TiO2-SnO2 under ultraviolet light irradiation. Moreover, Ag/TiO2-SnO2 (CTAB) composite can significantly affect the photocatalytic degradation under multi-modes including UV light, visible light, simulated solar light and microwave-assisted irradiation. Meanwhile, the photocatalytic activity of Ag/TiO2-SnO2 (CTAB) was maintained even after three cycles, indicating that the catalyst had good usability.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Xuan Nui Pham ◽  
Tuan Dat Pham ◽  
Ba Manh Nguyen ◽  
Hoa Thi Tran ◽  
Dinh Trong Pham

Mesoporous Al-MCM-41@Ag/TiO2 nanocomposites were synthesized successfully by combining the sol-gel method and hydrothermal treatment, using titanium isopropoxide (TTIP), AgNO3, and Vietnamese bentonite as precursors of Ti, Ag, and Si, respectively. The synthesized materials were well characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption-desorption isotherm measurements, energy dispersive X-ray spectroscopy (EDX), UV-visible diffuse reflectance spectroscopy (UV-Vis/DRS), and X-ray photoelectron spectroscopy (XPS). The photocatalytic activity was evaluated by the photodegradation of dibenzothiophene (DBT) under both UV and visible light irradiation. MCM-41@Ag/TiO2 catalyst exhibited high catalytic activity for the oxidative desulfurization (ODS) of DBT reaching almost 100% conversions at 50°C after 2 h under UV and visible light irradiations. The significant enhanced degradation of DBT over Al-MCM-41@Ag/TiO2 might be due to the synergy effects of high surface area of MCM-41, well-distributed TiO2 anatase, and reduced electron-hole recombination rates due to the dispersion of Ag nanoparticles.


Separations ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 25
Author(s):  
Chukwuka Bethel Anucha ◽  
Ilknur Altin ◽  
Emin Bacaksız ◽  
Tayfur Kucukomeroglu ◽  
Masho Hilawie Belay ◽  
...  

Abatement of contaminants of emerging concerns (CECs) in water sources has been widely studied employing TiO2 based heterogeneous photocatalysis. However, low quantum energy yield among other limitations of titania has led to its modification with other semiconductor materials for improved photocatalytic activity. In this work, a 0.05 wt.% CuWO4 over TiO2 was prepared as a powder composite. Each component part synthesized via the sol-gel method for TiO2, and CuWO4 by co-precipitation assisted hydrothermal method from precursor salts, underwent gentle mechanical agitation. Homogenization of the nanopowder precursors was performed by zirconia ball milling for 2 h. The final material was obtained after annealing at 500 °C for 3.5 h. Structural and morphological characterization of the synthesized material has been achieved employing X-ray diffraction (XRD), Fourier transform infra-red (FTIR) spectroscopy, Brunauer–Emmett–Teller (BET) N2 adsorption–desorption analysis, Scanning electron microscopy-coupled Energy dispersive X-ray spectroscopy (SEM-EDS), Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and UV-Vis diffuse reflectance spectroscopy (UV-vis DRS) for optical characterization. The 0.05 wt.% CuWO4-TiO2 catalyst was investigated for its photocatalytic activity over carbamazepine (CBZ), achieving a degradation of almost 100% after 2 h irradiation. A comparison with pure TiO2 prepared under those same conditions was made. The effect of pH, chemical scavengers, H2O2 as well as contaminant ion effects (anions, cations), and humic acid (HA) was investigated, and their related influences on the photocatalyst efficiency towards CBZ degradation highlighted accordingly.


2014 ◽  
Vol 809-810 ◽  
pp. 890-894
Author(s):  
Dan Li ◽  
Lian Wei Shan ◽  
Gui Lin Wang ◽  
Li Min Dong ◽  
Wei Li ◽  
...  

Boron-BiVO4 samples were synthesized by sol-gel method. They were characterized by UV-vis diffuse reflectance spectroscopy, X-ray diffraction. Photocatalytic activity of the obtained BiVO4 samples was investigated through degrading methylene blue (MB). The results reveal that boron-BiVO4 catalysts have monoclinic scheelite structure. The BiVO4 and Co-BiVO4 photocatalysts were responsive to visible light. Co-BiVO4 photocatalyst showed higher photocatalytic activity than pure BiVO4, resulting in the significantly improved efficiency of degradation of MB.


Nanomaterials ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1671 ◽  
Author(s):  
Weike Zhang ◽  
Yanrong Zhang ◽  
Kai Yang ◽  
Yanqing Yang ◽  
Jia Jia ◽  
...  

A silicon dioxide/carbon nano onions/titanium dioxide (SiO2/CNOs/TiO2) composite was synthesized by a simple sol-gel method and characterized by the methods of X-ray diffraction (XRD), scanning electronic microscope (SEM), X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET), Fourier transform infrared (FTIR), thermogravimetric analysis (TG), differential scanning calorimeter (DSC) and UV-Vis diffuse reflectance spectra (UV-Vis DRS). In this work, the photocatalytic activity of the SiO2/CNOs/TiO2 photocatalyst was assessed by testing the degradation rate of Rhodamine B (RhB) under visible light. The results indicated that the samples exhibited the best photocatalytic activity when the composite consisted of 3% CNOs and the optimum dosage of SiO2/CNOs/TiO2(3%) was 1.5 g/L as evidenced by the highest RhB degradation rate (96%). The SiO2/CNOs/TiO2 composite greatly improved the quantum efficiency of TiO2. This work provides a new option for the modification of subsequent nanocomposite oxide nanoparticles.


2019 ◽  
Vol 12 (04) ◽  
pp. 1950045 ◽  
Author(s):  
Lin Zhao ◽  
Yanzhao Xie ◽  
Qiuyu Lin ◽  
Rongze Zheng ◽  
Yong Diao

A series of composite catalysts of C, N and P co-doped TiO2 were prepared by sol-gel method, using a biomass (soluble starch) dopant. The samples were characterized by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-Vis diffuse reflectance spectroscopy (DRS), fourier transform infrared (FTIR) spectroscopy. The results show that TiO2 is co-doped with C, N and P by one step. The resulting composite exhibited higher specific surface area, wider visible-light absorption band with respect to the pure TiO2. The sample calcined at 400∘C for 2[Formula: see text]h with a doping amount of 6[Formula: see text]g soluble starch showed the best electrochemical performance. The C, N and P co-doped TiO2 was also used for the degradation of methylene blue (MB) and degradation ratio was up to 98% in 80[Formula: see text]min under visible light irradiation.


Sign in / Sign up

Export Citation Format

Share Document