An Evapotranspiration Assimilation Method Based on Ensemble Kalman Filter and À Trous Wavelet
It is challenging to assimilate the evapotranspiration product (EP) retrieved from satellite data into land surface models (LSMs). In this paper, a perturbed ensemble Kalman filter (PEKF) and à trous wavelet transform (AWT) integrated method are proposed to implement the evapotranspiration assimilation. In this method, the AWT is used to decompose the EPs into multiple channels since it is very powerful in fusing high frequency spatial information of multisource data, and then the Kalman filter is performed in the AWT domain. The proposed method combines the advantages of the PEKF that is capable of accommodating model error and observation error, and the AWT can effectively perform multiresolution fusion. Assimilation experiment conducted with the Noah model and the EP retrieved from the MODIS data shows that the proposed method performs better than the traditional ensemble Kalman filter (EnKF) and PEKF methods. The analysis results fit well with the evapotranspiration observation at two field sites with different land surface conditions. These indicate that the proposed method is promising for assimilating regional scale satellite retrieved EP into LSMs.