scholarly journals Convergent Homotopy Analysis Method for Solving Linear Systems

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
H. Nasabzadeh ◽  
F. Toutounian

By using homotopy analysis method (HAM), we introduce an iterative method for solving linear systems. This method (HAM) can be used to accelerate the convergence of the basic iterative methods. We also show that by applying HAM to a divergent iterative scheme, it is possible to construct a convergent homotopy-series solution when the iteration matrix G of the iterative scheme has particular properties such as being symmetric, having real eigenvalues. Numerical experiments are given to show the efficiency of the new method.

Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 143-148 ◽  
Author(s):  
Emran Khoshrouye Ghiasi ◽  
Reza Saleh

AbstractIn this paper, homotopy analysis method (HAM) and variational iteration method (VIM) are utilized to derive the approximate solutions of the Tricomi equation. Afterwards, the HAM is optimized to accelerate the convergence of the series solution by minimizing its square residual error at any order of the approximation. It is found that effect of the optimal values of auxiliary parameter on the convergence of the series solution is not negligible. Furthermore, the present results are found to agree well with those obtained through a closed-form equation available in the literature. To conclude, it is seen that the two are effective to achieve the solution of the partial differential equations.


In this chapter, the analytic solution of nonlinear partial differential equations arising in heat transfer is obtained using the newly developed analytic method, namely the Homotopy Analysis Method (HAM). The homotopy analysis method provides us with a new way to obtain series solutions of such problems. This method contains the auxiliary parameter provides us with a simple way to adjust and control the convergence region of series solution. By suitable choice of the auxiliary parameter, we can obtain reasonable solutions for large modulus.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Shaheed N. Huseen ◽  
Said R. Grace

A modifiedq-homotopy analysis method (mq-HAM) was proposed for solvingnth-order nonlinear differential equations. This method improves the convergence of the series solution in thenHAM which was proposed in (see Hassan and El-Tawil 2011, 2012). The proposed method provides an approximate solution by rewriting thenth-order nonlinear differential equation in the form ofnfirst-order differential equations. The solution of thesendifferential equations is obtained as a power series solution. This scheme is tested on two nonlinear exactly solvable differential equations. The results demonstrate the reliability and efficiency of the algorithm developed.


2009 ◽  
Vol 64 (12) ◽  
pp. 811-818 ◽  
Author(s):  
Saeid Abbasbandy ◽  
Elyas Shivanian

This investigation presents a mathematical model describing the homotopy analysis method (HAM) for systems of linear and nonlinear integro-differential equations. Some examples are analyzed to illustrate the ability of the method for such systems. The results reveal that this method is very effective and highly promising


2009 ◽  
Vol 64 (1-2) ◽  
pp. 59-64 ◽  
Author(s):  
Saeid Abbasbandy ◽  
Tasawar Hayat ◽  
Rahmat Ellahi ◽  
Saleem Asghar

Series solution for a steady flow of a third grade fluid between two porous walls is given by the homotopy analysis method (HAM). Comparison with the existing numerical solution is shown. It is found that, unlike the numerical solution, the present series solution holds for all values of the material parameter of a third grade fluid.


2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Hadi Hosseini Fadravi ◽  
Hassan Saberi Nik ◽  
Reza Buzhabadi

The analytical solution of the foam drainage equation with time- and space-fractional derivatives was derived by means of the homotopy analysis method (HAM). The fractional derivatives are described in the Caputo sense. Some examples are given and comparisons are made; the comparisons show that the homotopy analysis method is very effective and convenient. By choosing different values of the parameters in general formal numerical solutions, as a result, a very rapidly convergent series solution is obtained.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Ahmad El-Ajou ◽  
Omar Abu Arqub ◽  
Shaher Momani

In this paper, series solution of second-order integrodifferential equations with boundary conditions of the Fredholm and Volterra types by means of the homotopy analysis method is considered. The new approach provides the solution in the form of a rapidly convergent series with easily computable components using symbolic computation software. The homotopy analysis method provides us with a simple way to adjust and control the convergence region of the infinite series solution by introducing an auxiliary parameter. The proposed technique is applied to a few test examples to illustrate the accuracy, efficiency, and applicability of the method. The results reveal that the method is very effective, straightforward, and simple.


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
M. S. Hashemi ◽  
J. Malekinagad ◽  
H. R. Marasi

The homotopy analysis method (HAM) is proposed to obtain a semianalytical solution of the system of fuzzy differential equations (SFDE). The HAM contains the auxiliary parameterħ, which provides us with a simple way to adjust and control the convergence region of solution series. Concept ofħ-meshes and contour plots firstly are introduced in this paper which are the generations of traditionalh-curves. Convergency of this method for the SFDE has been considered and some examples are given to illustrate the efficiency and power of HAM.


2008 ◽  
Vol 2008 ◽  
pp. 1-16 ◽  
Author(s):  
O. Abdulaziz ◽  
I. Hashim ◽  
A. Saif

The homotopy analysis method (HAM) is applied to solve linear and nonlinear fractional partial differential equations (fPDEs). The fractional derivatives are described by Caputo's sense. Series solutions of the fPDEs are obtained. A convergence theorem for the series solution is also given. The test examples, which include a variable coefficient, inhomogeneous and hyperbolic-type equations, demonstrate the capability of HAM for nonlinear fPDEs.


Sign in / Sign up

Export Citation Format

Share Document