scholarly journals Modeling of the Channel Thickness Influence on Electrical Characteristics and Series Resistance in Gate-Recessed Nanoscale SOI MOSFETs

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
A. Karsenty ◽  
A. Chelly

Ultrathin body (UTB) and nanoscale body (NSB) SOI-MOSFET devices, sharing a similar W/L but with a channel thickness of 46 nm and lower than 5 nm, respectively, were fabricated using a selective “gate-recessed” process on the same silicon wafer. Their current-voltage characteristics measured at room temperature were found to be surprisingly different by several orders of magnitude. We analyzed this result by considering the severe mobility degradation and the influence of a huge series resistance and found that the last one seems more coherent. Then the electrical characteristics of the NSB can be analytically derived by integrating a gate voltage-dependent drain source series resistance. In this paper, the influence of the channel thickness on the series resistance is reported for the first time. This influence is integrated to the analytical model in order to describe the trends of the saturation current with the channel thickness. This modeling approach may be useful to interpret anomalous electrical behavior of other nanodevices in which series resistance and/or mobility degradation is of a great concern.

2012 ◽  
Vol 1426 ◽  
pp. 365-370
Author(s):  
Francisco Temoltzi Avila ◽  
Andrey Kosarev ◽  
Ismael Cosme ◽  
Mario Moreno ◽  
P. Roca y Cabarrocas

ABSTRACTThe dark current-voltage characteristics of PIN structures are studied and analyzed for PV samples as for integral device without taking account the performance of the different elements typically used in equivalent circuit model such as diode n-factor, shunt and series resistances. The contribution of all these elements is very important in the development of devices because they determine the performance characteristics. In this work we have studied and compared the temperature dependence of current-voltage characteristics in μc-Si:H and pm-Si:H p-i-n structures having approximately the same efficiencies with emphasis on their different electronic characteristics such as shunt (Rsh) and series (Rs) resistance, ideality factor (n), and the saturation current (Is), which give us some ideas on role of these elements. In the pm-Si:H cell it was observed that the Rs increases with the increase of the temperature in contrast to the μc-Si:H structures, where the series resistance reduces with temperature change from T = 300 up to 480K. In both the pm-Si:H and μc-Si:H samples Rshreduces with temperature change from 300 up to 480 K. The ideality factor in the pm-Si:H structure shows an increase, and in μc-Si:H a reduction, when temperature increases. Saturation current in both cases increases with temperature as it was expected. From the saturation current it was obtained the build-in potential. Analysis behavior of both saturation current and n-factor with temperature shows that build-in potential increases with temperature in the pm-Si:H, but reduces in μc-Si:H structure.


2011 ◽  
Vol 378-379 ◽  
pp. 606-609 ◽  
Author(s):  
Itsara Srithanachai ◽  
Surada Ueamanapong ◽  
Amporn Poyai ◽  
Surasak Niemcharoen

This paper investigates the effect of soft X-ray irradiation various energy and times on P-N junction diodes. X-ray energy irradiated on P-N junction diode with 55 and 70 keV with various time in the range 5-50 sec. After irradiations were study on the current-voltage (I-V) characteristics and capacitance-voltage (C-V) characteristics. Leakages current after irradiated by X-ray are not change, while forward current are increase about 3 orders. The change of current-voltage characteristics can analyze by many parameter such as carrier lifetime and series resistance. Capacitance-voltage characteristics after irradiation are not change. The results show that soft X-ray technique can be improving performance of the P-N junction diodes. These techniques are importance to use for improving device performance in industry work.


2015 ◽  
Vol 1120-1121 ◽  
pp. 435-439
Author(s):  
Nathaporn Promros ◽  
Dalin Prajakkan ◽  
Nantharat Hongsa ◽  
Nattanee Suthayanan ◽  
Phongsaphak Sittimart ◽  
...  

In this work, n-type β-FeSi2/intrinsic Si/p-type Si heterojunctions were prepared by facing-targets direct-current sputtering. We measured their current-voltage characteristics at low temperatures ranging from 300 K down to 50 K and investigated their ideality factor, saturation current and series resistance using thermionic emission theory and Cheung’s method. From thermionic emission theory, the ideality factor and saturation current density were calculated from the slope of the linear part from the forward lnJ-V and the straight line intercept of lnJ-V at zero voltage, respectively. When the temperature decreased from 300 K down to 50 K, the ideality factor increased from 1.12 to 11.13, whereas the saturation current density decreased from 2.09 × 10-6 A/cm2 to 1.06 × 10-9 A/cm2. Using Cheung’s method, we plotted the relations of dV/d(lnJ)-J and H(J)-J in order to estimate the series resistance from the slope of both plots. In addition, we estimated the ideality factor from a y-axis intercept of the dV/d(lnJ)-J plot. The series resistances from both plots were consistent with each other and increased with the decreasing temperature. The ideality factor estimated by Cheung’s method was in agreement with that obtained from estimation by thermionic emission theory.


Author(s):  
Sadia Muniza Faraz ◽  
Syed Riaz un Nabi Jafri ◽  
Zarreen Tajvar ◽  
Naveed ul Hassan Alvi ◽  
Qamar-ul Wahab ◽  
...  

The effect of thermal annealing atmosphere on the electrical characteristics of Zinc oxide (ZnO) nanorods/p-Silicon (Si) diodes is investigated. ZnO nanorods are grown by low-temperature aqueous solution growth method and annealed in Nitrogen and Oxygen atmosphere. As-grown and annealed nanorods are studied by scanning electron microscopy (SEM) and photoluminescence (PL) spectroscopy. Electrical characteristics of ZnO/Si heterojunction diodes are studied by current-voltage (I-V) and capacitance-voltage (C-V) measurements at room temperature. Improvements in rectifying behaviour, ideality factor, carrier concentration, and series resistance are observed after annealing. The ideality factor of 4.4 for as-grown improved to 3.8 and for Nitrogen and Oxygen annealed improved to 3.5 nanorods diodes. The series resistances decreased from 1.6 to 1.8 times after annealing. An overall improved behaviour is observed for oxygen annealed heterojunction diodes. The study suggests that by controlling the ZnO nanorods annealing temperatures and atmospheres the electronic and optoelectronic properties of ZnO devices can be improved.


2013 ◽  
Vol 27 (11) ◽  
pp. 1350080 ◽  
Author(s):  
MUHAMMAD TAHIR ◽  
MUHAMMAD HASSAN SAYYAD ◽  
FAZAL WAHAB ◽  
DIL NAWAZ KHAN

This paper reports the fabrication of Ag / N - BuHHPDI /p- Si heterojunction diode by evaporating a layer of organic compound N-Butyl-N'-(6-hydroxyhexyl) perylene-3,4,9,10-tetracarboxylicacid-diimide (N-BuHHPDI) on top of the p- Si . The electronic properties of the heterojunction have been studied, in dark at a temperature of 300 K, by conventional current–voltage (I–V) method, Norde's method and Cheung's technique. By analyzing conventional I–V characteristics, the device exhibited rectifying behavior with a rectification ratio of 62.67 at ± 5.8 V. From the forward biased I–V measurements, the barrier height and ideality factor values of 0.83 eV and 6.4, respectively, have been obtained. Different diode parameters such as series resistance, shunt resistance, reverse saturation current and turn on voltage have been extracted from the I–V measurements. The parameters calculated from Norde's and Cheung's methods are found to be in good agreement with those calculated from conventional I–V measurements. Morphology of the N-BuHHPDI film is investigated using atomic force microscope (AFM).


1994 ◽  
Vol 361 ◽  
Author(s):  
Chang Jung Kim ◽  
Dae Sung Yoon ◽  
Joon Sung Lee ◽  
Chaun Gi Choi ◽  
Won Jong Lee ◽  
...  

ABSTRACTThe (100), (111) and randomly oriented PZT thin films were fabricated on Pt/Ti/Coming 7059 glass using sol-gel method. The thin films having different orientation were fabricated by different drying conditions for pyrolysis. The preferred orientations of the PZT thin films were observed using XRD, rocking curves, and pole figures. The microstructures were investigated using SEM. The hysteresis loops and capacitance-voltage characteristics of the films were investigated using a standardized ferroelectric test system. The dielectric constant and current-voltage characteristics of the films were investigated using an impedance analyzer and pA meter, respectively. The films oriented in a particular direction showed superior electrical characteristics to the randomly oriented films.


2013 ◽  
Vol 717 ◽  
pp. 113-116
Author(s):  
Sani Klinsanit ◽  
Itsara Srithanachai ◽  
Surada Ueamanapong ◽  
Sunya Khunkhao ◽  
Budsara Nararug ◽  
...  

The effect of soft X-ray irradiation to the Schottky diode properties was analyzed in this paper. The built-in voltage, leakage current, and work function of Schottky diode were investigated. The current-voltage characteristics of the Schottky diode are measured at room temperature. After irradiation at 70 keV for 55 seconds the forward current and leakage current are increase slightly. On the other hand, the built-in voltage is decrease from the initial value about 0.12 V. Consequently, this method can cause the Schottky diode has low power consumption. The results show that soft X-ray can improve the characteristics of Schottky diode.


2004 ◽  
Vol 85 (1) ◽  
pp. 115-117 ◽  
Author(s):  
Wenping Hu ◽  
Hiroshi Nakashima ◽  
Kazuaki Furukawa ◽  
Yoshiaki Kashimura ◽  
Katsuhiro Ajito ◽  
...  

1996 ◽  
Vol 39 (1) ◽  
pp. 83-87 ◽  
Author(s):  
Enise Ayyildiz ◽  
Abdulmecit Türüt ◽  
Hasan Efeoğlu ◽  
Sebahattin Tüzemen ◽  
Mustafa Sağlam ◽  
...  

2016 ◽  
Vol 858 ◽  
pp. 749-752 ◽  
Author(s):  
Anatoly M. Strel'chuk ◽  
Viktor V. Zelenin ◽  
Alexei N. Kuznetsov ◽  
Joseph Tringe ◽  
Albert V. Davydov ◽  
...  

A study of forward current-voltage characteristics of Ni/4H-SiC Schottky diodes (SDs) before and after irradiation with He+ ions revealed features that characterize defect structures and reveal the degradation mechanism of the diodes. These features are the presence of excess currents of certain type in the unirradiated SDs, their appearance in forward-biased originally ideal SDs, and a >10 orders of magnitude scatter of the series resistance of the SDs upon their irradiation with He+ ions. A model of localized defect-induced current paths (shunts) in the form of unintentionally produced SDs with the substrate is suggested.


Sign in / Sign up

Export Citation Format

Share Document