scholarly journals Regularity of a Stochastic Fractional Delayed Reaction-Diffusion Equation Driven by Lévy Noise

2013 ◽  
Vol 2013 ◽  
pp. 1-11
Author(s):  
Tianlong Shen ◽  
Jianhua Huang ◽  
Jin Li

The current paper is devoted to the regularity of the mild solution for a stochastic fractional delayed reaction-diffusion equation driven by Lévy space-time white noise. By the Banach fixed point theorem, the existence and uniqueness of the mild solution are proved in the proper working function space which is affected by the delays. Furthermore, the time regularity and space regularity of the mild solution are established respectively. The main results show that both time regularity and space regularity of the mild solution depend on the regularity of initial value and the order of fractional operator. In particular, the time regularity is affected by the regularity of initial value with delays.

2010 ◽  
Vol 140 (5) ◽  
pp. 1081-1109 ◽  
Author(s):  
Zhi-Cheng Wang ◽  
Wan-Tong Li

AbstractThis paper is concerned with the dynamics of a non-local delayed reaction–diffusion equation without quasi-monotonicity on an infinite n-dimensional domain, which can be derived from the growth of a stage-structured single-species population. We first prove that solutions of the Cauchy-type problem are positively preserving and bounded if the initial value is non-negative and bounded. Then, by establishing a comparison theorem and a series of comparison arguments, we prove the global attractivity of the positive equilibrium. When there exist no positive equilibria, we prove that the zero equilibrium is globally attractive. In particular, these results are still valid for the non-local delayed reaction–diffusion equation on a bounded domain with the Neumann boundary condition. Finally, we establish the existence of new entire solutions by using the travelling-wave solutions of two auxiliary equations and the global attractivity of the positive equilibrium.


Author(s):  
Ali slimani ◽  
Amar Guesmia

Keller-Segel chemotaxis model is described by a system of nonlinear PDE : a convection diffusion equation for the cell density coupled with a reaction-diffusion equation for chemoattractant concentration. In this work, we study the phenomenon of Keller Segel model coupled with a heat equation, because The heat has an effect the density of the cells as well as the signal of chemical concentration, since the heat is a factor affecting the spread and attraction of cells as well in relation to the signal of chemical concentration, The main objectives of this work is the study of the global existence and uniqueness and boundedness of the weak solution for the problem defined in (8) for this we use the technical of Galerkin method.


Sign in / Sign up

Export Citation Format

Share Document