scholarly journals Mixed Static and Dynamic Optimization of Four-Parameter Functionally Graded Completely Doubly Curved and Degenerate Shells and Panels Using GDQ Method

2013 ◽  
Vol 2013 ◽  
pp. 1-33 ◽  
Author(s):  
Francesco Tornabene ◽  
Alessandro Ceruti

This study deals with a mixed static and dynamic optimization of four-parameter functionally graded material (FGM) doubly curved shells and panels. The two constituent functionally graded shell consists of ceramic and metal, and the volume fraction profile of each lamina varies through the thickness of the shell according to a generalized power-law distribution. The Generalized Differential Quadrature (GDQ) method is applied to determine the static and dynamic responses for various FGM shell and panel structures. The mechanical model is based on the so-called First-order Shear Deformation Theory (FSDT). Three different optimization schemes and methodologies are implemented. The Particle Swarm Optimization, Monte Carlo and Genetic Algorithm approaches have been applied to define the optimum volume fraction profile for optimizing the first natural frequency and the maximum static deflection of the considered shell structure. The optimization aim is in fact to reach the frequency and the static deflection targets defined by the designer of the structure: the complete four-dimensional search space is considered for the optimization process. The optimized material profile obtained with the three methodologies is presented as a result of the optimization problem solved for each shell or panel structure.

2010 ◽  
Vol 19 (2) ◽  
pp. 096369351001900 ◽  
Author(s):  
F. Ebrahimi ◽  
H.A. Sepiani

In this study, a formulation for the free vibration and buckling of cylindrical shells made of functionally graded material (FGM) subjected to combined static and periodic axial loadings are presented. The properties are temperature dependent and graded in the thickness direction according to a volume fraction power law distribution. The analysis is based on two different methods of first-order shear deformation theory (FSDT) considering the transverse shear strains and the rotary inertias and the classical shell theory (CST). The results obtained show that the effect of transverse shear and rotary inertias on vibration and buckling of functionally graded cylindrical shells is dependent on the material composition, the temperature environment, the amplitude of static load, the deformation mode, and the shell geometry parameters.


2019 ◽  
Vol 11 (03) ◽  
pp. 1950025 ◽  
Author(s):  
Mohammed Shakir ◽  
Mohammad Talha

This paper presents the influence of various random system parameters on dynamics response of imperfection sensitive higher order shear deformable functionally graded material (FGM) plates. Young’s moduli, Poisson’s ratio and volume fraction index are considered as random system parameters. The material properties of the FGM plates are assumed to vary along the thickness direction using simple power-law distribution in terms of the volume fraction of the constituents. The plate kinematics is based on Reddy’s higher order shear deformation theory. Finite element method (FEM) is employed in conjunction with first-order perturbation technique (FOPT) and Newmark integration scheme to explore the influence of different system parameters, like volume fraction indices, aspect ratio, material uncertainties, and imperfection amplitude on the dynamic responses of the FGM plates.


2021 ◽  
Vol 8 (4) ◽  
pp. 691-704
Author(s):  
M. Janane Allah ◽  
◽  
Y. Belaasilia ◽  
A. Timesli ◽  
A. El Haouzi ◽  
...  

In this work, an implicit algorithm is used for analyzing the free dynamic behavior of Functionally Graded Material (FGM) plates. The Third order Shear Deformation Theory (TSDT) is used to develop the proposed model. In this contribution, the formulation is written without any homogenization technique as the rule of mixture. The Hamilton principle is used to establish the resulting equations of motion. For spatial discretization based on Finite Element Method (FEM), a quadratic element with four and eight nodes is adopted using seven degrees of freedom per node. An implicit algorithm is used for solving the obtained problem. To study the accuracy and the performance of the proposed approach, we present comparisons with literature and laminate composite modeling results for vibration natural frequencies. Otherwise, we examine the influence of the exponent of the volume fraction which reacts the plates "P-FGM" and "S-FGM". In addition, we study the influence of the thickness on "E-FGM" plates.


Author(s):  
Pham Hoang Anh ◽  
Tran Thuy Duong

In this article, an efficient numerical approach for weight optimisation of functionally graded (FG) beams in the presence of frequency constraints is presented. For the analysis purpose, a finite element (FE) solution based on the first order shear deformation theory (FSDT) is established to analyse the free vibration behaviour of FG beams. A four-parameter power law distribution and a five-parameter trigonometric distribution are used to describe the volume fraction of material constituents in the thickness direction. The goal is to tailor the thickness and material distribution for minimising the weight of FG beams while constraining the fundamental frequency to be greater than a prescribed value. The constrained optimisation problem is effectively solved by a novel differential evolution (DE) algorithm. The validity and efficiency of the proposed approach is demonstrated through two numerical examples corresponding to the four-parameter distribution and the five-parameter distribution.Keywords: FGM beam; lightweight design; frequency constraint; differential evolution.


2017 ◽  
Vol 21 (4) ◽  
pp. 1316-1356 ◽  
Author(s):  
Dang T Dong ◽  
Dao Van Dung

This study presents a nonlinear vibration analysis of function graded sandwich doubly curved shallow shells, which reinforced by functionally graded material stiffeners and rested on the Pasternak foundation. The shells are subjected to the combination of mechanical, thermal, and damping loading. Four models of the sandwich shells with general sigmoid and power laws distribution are considered. The governing equations are established based on the third-order shear deformation theory. Von Kármán-type nonlinearity and smeared stiffener technique are taken into account. The explicit expressions for determining natural frequencies, nonlinear frequency–amplitude relation, and time–deflection curves are obtained by employing the Galerkin method. Finally, the fourth-order Runge–Kutta method is applied to investigate the influences of functionally graded material stiffeners, the boundary conditions, the models of the shells, thermal environment, foundation and geometrical parameters on the natural frequencies and dynamic nonlinear responses of the sandwich shells.


2012 ◽  
Vol 12 (02) ◽  
pp. 311-335 ◽  
Author(s):  
X. Q. HE ◽  
L. LI ◽  
S. KITIPORNCHAI ◽  
C. M. WANG ◽  
H. P. ZHU

Based on an inextensional two-parameter analytical model for cylindrical shells, bi-stable analyses were carried out on laminated functionally graded material (FGM) shells with various layups of fibers. Properties of FGM shells are functionally graded in the thickness direction according to a volume fraction power law distribution. The effects of constituent volume fractions of FGM matrix are examined on the curvature and twist of laminated FGM shells. The results reveal that the optimum combination of constituents of FGM matrix can be obtained for the maximum twist of FGM shells with antisymmetric layups, which helps the design of deployable structures. The effects of Young's modulus of fibers and the symmetry of layups on bi-stable behaviors are also discussed in detail.


Author(s):  
Vishesh Ranjan Kar ◽  
Subrata Kumar Panda

Free vibration responses of functionally graded spherical shell panels are investigated in the present article. A general mathematical model is developed based on higher order shear deformation theory mid-plane kinematics. The effective material properties are graded in the thickness direction according to a power-law distribution and it varies continuously from metal (bottom surface) to ceramic (top surface). The model is discretized using a nine noded quadrilateral Lagrangian element. A convergence test has been done with different mesh refinement and compared with the available published results. In addition to that the present study includes an ANSYS model check with the developed mathematical model to show the efficacy. New results are computed for different parameters such as volume fraction, thickness ratio, curvature ratio and support conditions which indicates the effect of parametric study on non-dimensional frequency parameters.


2017 ◽  
Vol 39 (4) ◽  
pp. 329-338
Author(s):  
Dang Thuy Dong ◽  
Dao Van Dung

In part 1, the governing nonlinear dynamic equations of FGM sandwich doubly curved shallow shells reinforced by FGM stiffeners on elastic foundation subjected to mechanical and thermal loading are established based on the first order shear deformation theory (FSDT) with von Kármán - type nonlinearity and smeared stiffener technique. In the present part, the fourth-order Runge-Kutta method is applied to investigate influences of models of the shells, FGM stiffeners, thermal environment, elastic foundation, and geometrical parameters on the natural frequencies and dynamic nonlinear responses of stiffened FGM sandwich doubly curved shallow shells.


2017 ◽  
Vol 39 (3) ◽  
pp. 245-257
Author(s):  
Dang Thuy Dong ◽  
Dao Van Dung

Nonlinear vibration of FGM sandwich doubly curved shallow shells reinforced by FGM stiffeners subjected to mechanical and thermal loading are investigated based on the first-order shear deformation theory (FSDT) with von Karman type nonlinearity, taking into account initial geometrical imperfection and smeared stiffener technique. Four material models of the FGM sandwich shells are presented. Explicit expressions for natural frequencies, nonlinear frequency-amplitude relation, and time-deflection curves of the FGM sandwich shallow shells are derived using Galerkin method.


2013 ◽  
Vol 05 (04) ◽  
pp. 1350041 ◽  
Author(s):  
M.N.A. GULSHAN TAJ ◽  
ANUPAM CHAKRABARTI

In the present study, an attempt has been made to present the Co finite element formulation based on third order shear deformation theory for buckling analysis of functionally graded material skew plate under thermo-mechanical environment. Here, prime emphasis has been given to study the influence of skew angle on the buckling behavior of functionally graded plate. Two dissimilar homogenization schemes, namely Mori–Tanaka scheme and Voigt rule of mixture are employed to sketch their influence for the interpretation of data. Temperature-dependent material properties of the constituents of the plate are considered to perform thermal analysis. Numerical examples are solved using different mixture of ceramic and metal plates to generate the new results and relative imperative conclusions are highlighted. The roles played by the different factors like loading condition, volume fraction index, skew angle, boundary condition, aspect ratio, thickness ratio and homogenization schemes on buckling behavior of the FGM skew plates are presented in the form of tables and figures.


Sign in / Sign up

Export Citation Format

Share Document