scholarly journals Asymptotic Stability of Caputo Type Fractional Neutral Dynamical Systems with Multiple Discrete Delays

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Hai Zhang ◽  
Daiyong Wu ◽  
Jinde Cao

We discuss the delay-independent asymptotic stability of Caputo type fractional-order neutral differential systems with multiple discrete delays. Based on the algebraic approach and matrix theory, the sufficient conditions are derived to ensure the asymptotic stability for all time-delay parameters. By applying the stability criteria, one can avoid solving the roots of transcendental equations. The results obtained are computationally flexible and convenient. Moreover, an example is provided to illustrate the effectiveness and applicability of the proposed theoretical results.

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Hai Zhang ◽  
Daiyong Wu ◽  
Jinde Cao ◽  
Hui Zhang

We investigate the delay-independently asymptotic stability of fractional-order linear singular delay differential systems. Based on the algebraic approach, the sufficient conditions are presented to ensure the asymptotic stability for any delay parameter. By applying the stability criteria, one can avoid solving the roots of transcendental equations. An example is also provided to illustrate the effectiveness and applicability of the theoretical results.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Liyuan Hou ◽  
Hong Zhu

This paper investigates the stability of stochastic discrete-time neural networks (NNs) with discrete time-varying delays and leakage delay. As the partition of time-varying and leakage delay is brought in the discrete-time system, we construct a novel Lyapunov-Krasovskii function based on stability theory. Furthermore sufficient conditions are derived to guarantee the global asymptotic stability of the equilibrium point. Numerical example is given to demonstrate the effectiveness of the proposed method and the applicability of the proposed method.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Ann Al Sawoor

Abstract This paper is concerned with the asymptotic stability of linear fractional-order neutral delay differential–algebraic systems described by the Caputo–Fabrizio (CF) fractional derivative. A novel characteristic equation is derived using the Laplace transform. Based on an algebraic approach, stability criteria are established. The effect of the index on such criteria is analyzed to ensure the asymptotic stability of the system. It is shown that asymptotic stability is ensured for the index-1 problems provided that a stability criterion holds for any delay parameter. Also, asymptotic stability is still valid for higher-index problems under the conditions that the system matrices have common eigenvectors and each pair of such matrices is simultaneously triangularizable so that a stability criterion holds for any delay parameter. An example is provided to demonstrate the effectiveness and applicability of the theoretical results.


Author(s):  
Rachida Mezhoud ◽  
Khaled Saoudi ◽  
Abderrahmane Zaraï ◽  
Salem Abdelmalek

AbstractFractional calculus has been shown to improve the dynamics of differential system models and provide a better understanding of their dynamics. This paper considers the time–fractional version of the Degn–Harrison reaction–diffusion model. Sufficient conditions are established for the local and global asymptotic stability of the model by means of invariant rectangles, the fundamental stability theory of fractional systems, the linearization method, and the direct Lyapunov method. Numerical simulation results are used to illustrate the theoretical results.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Xuling Wang ◽  
Xiaodi Li ◽  
Gani Tr. Stamov

This paper studies impulsive control systems with finite and infinite delays. Several stability criteria are established by employing the largest and smallest eigenvalue of matrix. Our sufficient conditions are less restrictive than the ones in the earlier literature. Moreover, it is shown that by using impulsive control, the delay systems can be stabilized even if it contains no stable matrix. Finally, some numerical examples are discussed to illustrate the theoretical results.


1982 ◽  
Vol 104 (1) ◽  
pp. 27-32 ◽  
Author(s):  
S. N. Singh

Using the invariance principle of LaSalle [1], sufficient conditions for the existence of linear and nonlinear control laws for local and global asymptotic stability of nonlinear Hamiltonian systems are derived. An instability theorem is also presented which identifies the control laws from the given class which cannot achieve asymptotic stability. Some of the stability results are based on certain results for the univalence of nonlinear maps. A similar approach for the stabilization of bilinear systems which include nonconservative systems in elasticity is used and a necessary and sufficient condition for stabilization is obtained. An application to attitude control of a gyrostat Satellite is presented.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Josef Diblík ◽  
Irada Dzhalladova ◽  
Miroslava Růžičková

The paper deals with nonlinear differential systems with random parameters in a general form. A new method for construction of the Lyapunov functions is proposed and is used to obtain sufficient conditions forL2-stability of the trivial solution of the considered systems.


2018 ◽  
Vol 40 (16) ◽  
pp. 4369-4381 ◽  
Author(s):  
Baojie Zheng ◽  
Xiaowu Mu

The formation-containment control problems of sampled-data second-order multi-agent systems with sampling delay are studied. In this paper, we assume that there exist interactions among leaders and that the leader’s neighbours are only leaders. Firstly, two different control protocols with sampling delay are presented for followers and leaders, respectively. Then, by utilizing the algebraic graph theory and matrix theory, several sufficient conditions are obtained to ensure that the leaders achieve a desired formation and that the states of the followers converge to the convex hull formed by the states of the leaders, i.e. the multi-agent systems achieve formation containment. Furthermore, an explicit expression of the formation position function is derived for each leader. An algorithm is provided to design the gain parameters in the protocols. Finally, a numerical example is given to illustrate the effectiveness of the obtained theoretical results.


Author(s):  
A. M. Yousef ◽  
S. Z. Rida ◽  
Y. Gh. Gouda ◽  
A. S. Zaki

AbstractIn this paper, we investigate the dynamical behaviors of a fractional-order predator–prey with Holling type IV functional response and its discretized counterpart. First, we seek the local stability of equilibria for the fractional-order model. Also, the necessary and sufficient conditions of the stability of the discretized model are achieved. Bifurcation types (include transcritical, flip and Neimark–Sacker) and chaos are discussed in the discretized system. Finally, numerical simulations are executed to assure the validity of the obtained theoretical results.


Fractals ◽  
2020 ◽  
Vol 28 (08) ◽  
pp. 2040009
Author(s):  
AWAIS YOUNUS ◽  
THABET ABDELJAWAD ◽  
TAZEEN GUL

In this paper, stability results of central concern for control theory are given for finite-dimensional linear and nonlinear local fractional or fractal differential systems. The main purpose of this paper is to provide some results on stability and asymptotic stability of conformable order systems, together with some illustrating examples.


Sign in / Sign up

Export Citation Format

Share Document