scholarly journals An Improved Antiwindup Design Using an Anticipatory Loop and an Immediate Loop

2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Qing Wang ◽  
Maopeng Ran ◽  
Chaoyang Dong ◽  
Maolin Ni

We present an improved antiwindup design for linear invariant continuous-time systems with actuator saturation nonlinearities. In the improved approach, two antiwindup compensators are simultaneously designed: one activated immediately at the occurrence of actuator saturation and the other activated in anticipatory of actuator saturation. Both the static and dynamic antiwindup compensators are considered. Sufficient conditions for global stability and minimizing the inducedL2gain are established, in terms of linear matrix inequalities (LMIs). We also show that the feasibility of the improved antiwindup is similar to the traditional antiwindup. Benefits of the proposed approach over the traditional antiwindup and a recent innovative antiwindup are illustrated with well-known examples.

2017 ◽  
Vol 10 (02) ◽  
pp. 1750022 ◽  
Author(s):  
Qimin Zhang ◽  
Xinjing Zhang ◽  
Hongfu Yang

In this paper, a class of stochastic Lotka–Volterra system with feedback controls is considered. The purpose is to establish some criteria to ensure the system is globally dissipative in the mean square. By constructing suitable Lyapunov functions as well as combining with Jensen inequality and It[Formula: see text] formula, the sufficient conditions are established and they are expressed in terms of the feasibility to a couple linear matrix inequalities (LMIs). Finally, the main results are illustrated by examples.


2013 ◽  
Vol 23 (2) ◽  
pp. 169-186 ◽  
Author(s):  
Anna Filasová ◽  
Daniel Gontkovič ◽  
Dušan Krokavec

The paper is engaged with the framework of designing adaptive fault estimation for linear continuous-time systems with distributed time delay. The Lyapunov-Krasovskii functional principle is enforced by imposing the integral partitioning method and a new equivalent delaydependent design condition for observer-based assessment of faults are established in terms of linear matrix inequalities. Asymptotic stability conditions are derived and regarded with respect to the incidence of structured matrix variables in the linear matrix inequality formulation. Simulation results illustrate the design approach, and demonstrates power and performance of the actuator fault assessment.


2003 ◽  
Vol 125 (2) ◽  
pp. 249-253 ◽  
Author(s):  
M. D. S. Aliyu

In this paper, the state-feedback mixed H2/H∞ control problem for state-delayed linear systems is considered. Sufficient conditions for the solvability of this problem are given in terms of the solution to a pair of algebraic Riccati equations similar to the nondelayed case. However, these Riccati equations are more difficult to solve than those arising in the pure H2,H∞ problems, and an alternative approach is to solve a pair of linear matrix inequalities (LMIs).


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Kamel Dabboussi ◽  
Jalel Zrida

New sufficient dilated linear matrix inequality (LMI) conditions for the static output feedback control problem of linear continuous-time systems with no uncertainty are proposed. The used technique easily and successfully extends to systems with polytopic uncertainties, by means of parameter-dependent Lyapunov functions (PDLFs). In order to reduce the conservatism existing in early standard LMI methods, auxiliary slack variables with even more relaxed structure are employed. It is shown that these slack variables provide additional flexibility to the solution. It is also shown, in this paper, that the proposed dilated LMI-based conditions always encompass the standard LMI-based ones. Numerical examples are given to illustrate the merits of the proposed method.


Author(s):  
KACZOREK TADEUSZ

The realization problem for positive, continuous-time linear single-input, single-output systems with delays is formulated and solved. Sufficient conditions for the existence of positive realizations of a given proper transfer function are established. A procedure for computation of positive minimal realizations is presented and illustrated by an example.


2018 ◽  
Vol 28 (2) ◽  
pp. 335-340 ◽  
Author(s):  
Tadeusz Kaczorek

Abstract Positive linear continuous-time systems are analyzed via conformable fractional calculus. A solution to a fractional linear system is derived. Necessary and sufficient conditions for the positivity of linear systems are established. Necessary and sufficient conditions for the asymptotic stability of positive linear systems are also given. The solutions of positive fractional linear systems based on the Caputo and conformable definitions are compared.


Sign in / Sign up

Export Citation Format

Share Document