scholarly journals Study on the Neutrino Oscillation with a Next Generation Medium-Baseline Reactor Experiment

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Chang Dong Shin ◽  
Kyung Kwang Joo

For over fifty years, reactor experiments have played an important role in neutrino physics, in both discoveries and precision measurements. One of the methods to verify the existence of neutrino is the observation of neutrino oscillation phenomena. Electron antineutrinos emitted from a reactor provide the measurement of the small mixing angleθ13, providing rich programs of neutrino properties, detector development, nuclear monitoring, and application. Using reactor neutrinos, future reactor neutrino experiments, more precise measurements ofθ12,  Δm122, and mass hierarchy will be explored. The precise measurement ofθ13would be crucial for measuring the CP violation parameters at accelerators. Therefore, reactor neutrino physics will assist in the complete understanding of the fundamental nature and implications of neutrino masses and mixing. In this paper, we investigated several characteristics of RENO-50, which is a future medium-baseline reactor neutrino oscillation experiment, by using the GloBES simulation package.

2012 ◽  
Vol 27 (08) ◽  
pp. 1230010 ◽  
Author(s):  
C. MARIANI

In this document we will review the current status of reactor neutrino oscillation experiments and present their physics potentials for measuring the θ13 neutrino mixing angle. The neutrino mixing angle θ13 is currently a high-priority topic in the field of neutrino physics. There are currently three different reactor neutrino experiments, DOUBLE CHOOZ, DAYA BAY and RENO and a few accelerator neutrino experiments searching for neutrino oscillations induced by this angle. A description of the reactor experiments searching for a nonzero value of θ13 is given, along with a discussion of the sensitivities that these experiments can reach in the near future.


2021 ◽  
Vol 81 (1) ◽  
Author(s):  
Pilar Coloma ◽  
Patrick Huber ◽  
Thomas Schwetz

AbstractA considerable experimental effort is currently under way to test the persistent hints for oscillations due to an eV-scale sterile neutrino in the data of various reactor neutrino experiments. The assessment of the statistical significance of these hints is usually based on Wilks’ theorem, whereby the assumption is made that the log-likelihood is $$\chi ^2$$ χ 2 -distributed. However, it is well known that the preconditions for the validity of Wilks’ theorem are not fulfilled for neutrino oscillation experiments. In this work we derive a simple asymptotic form of the actual distribution of the log-likelihood based on reinterpreting the problem as fitting white Gaussian noise. From this formalism we show that, even in the absence of a sterile neutrino, the expectation value for the maximum likelihood estimate of the mixing angle remains non-zero with attendant large values of the log-likelihood. Our analytical results are then confirmed by numerical simulations of a toy reactor experiment. Finally, we apply this framework to the data of the Neutrino-4 experiment and show that the null hypothesis of no-oscillation is rejected at the 2.6 $$\sigma $$ σ level, compared to 3.2 $$\sigma $$ σ obtained under the assumption that Wilks’ theorem applies.


2004 ◽  
Vol 19 (08) ◽  
pp. 1157-1166
Author(s):  
K. INOUE

Previous searches for neutrino oscillations with reactor neutrinos have been done only with baselines less than 1 km. The observed neutrino flux was consistent with the expectation and only excluded regions were drawn on the neutrino-oscillation-parameter space. Thus, those experiments played important roles in understanding neutrinos from fission reactors. Based on the knowledge from those experiments, an experiment with about a 180 km baseline became possible. Results obtained from this baseline experiment showed evidence for reactor neutrino disappearance and finally provide a resolution for the long standing solar neutrino problem when combined with results from the solar neutrino experiments. Several possibilities to explore the last unmeasured mixing angle θ13 with reactor neutrinos have recently been proposed. They will provide complementary information to long baseline accelerator experiments when one tries to solve the degeneracy of oscillation parameters. Reactor neutrinos are also useful to study the neutrino magnetic moment and the most stringent limits from terrestrial experiments are obtained by measuring the elastic scattering cross section of reactor neutrinos.


2006 ◽  
Vol 21 (08n09) ◽  
pp. 1855-1868 ◽  
Author(s):  
ALAN W. P. POON

Over the last several years, experiments have conclusively demonstrated that neutrinos are massive and that they mix. There is now direct evidence for νe s from the Sun transforming into other active flavors while en route to the Earth. The disappearance of reactor [Formula: see text], predicted under the assumption of neutrino oscillation, has also been observed. In this paper, recent results from solar and reactor neutrino experiments and their implications are reviewed. In addition, some of the future experimental endeavors in solar and reactor neutrinos are presented.


2013 ◽  
Vol 2013 ◽  
pp. 1-29 ◽  
Author(s):  
Silvia Pascoli ◽  
Thomas Schwetz

Recently the last unknown lepton mixing angleθ13has been determined to be relatively large, not too far from its previous upper bound. This opens exciting possibilities for upcoming neutrino oscillation experiments towards addressing fundamental questions, among them the type of the neutrino mass hierarchy and the search for CP violation in the lepton sector. In this paper we review the phenomenology of neutrino oscillations, focusing on subleading effects, which will be the key towards these goals. Starting from a discussion of the present determination of three-flavour oscillation parameters, we give an outlook on the potential of near-term oscillation physics as well as on the long-term program towards possible future precision oscillation facilities. We discuss accelerator-driven long-baseline experiments as well as nonaccelerator possibilities from atmospheric and reactor neutrinos.


2005 ◽  
Vol 20 (01) ◽  
pp. 1-17 ◽  
Author(s):  
OLGA MENA

We review the present understanding of neutrino masses and mixings, discussing what are the unknowns in the three-family oscillation scenario. Despite the anticipated success coming from the planned long baseline neutrino experiments in unraveling the leptonic mixing sector, there are two important unknowns which may remain obscure: the mixing angle θ13 and the CP-phase δ. The measurement of these two parameters has led us to consider the combination of superbeams and neutrino factories as the key to unveil the neutrino oscillation picture.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Yong Du ◽  
Hao-Lin Li ◽  
Jian Tang ◽  
Sampsa Vihonen ◽  
Jiang-Hao Yu

Abstract The Standard Model Effective Field Theory (SMEFT) provides a systematic and model-independent framework to study neutrino non-standard interactions (NSIs). We study the constraining power of the on-going neutrino oscillation experiments T2K, NOνA, Daya Bay, Double Chooz and RENO in the SMEFT framework. A full consideration of matching is provided between different effective field theories and the renormalization group running at different scales, filling the gap between the low-energy neutrino oscillation experiments and SMEFT at the UV scale. We first illustrate our method with a top- down approach in a simplified scalar leptoquark model, showing more stringent constraints from the neutrino oscillation experiments compared to collider studies. We then provide a bottom-up study on individual dimension-6 SMEFT operators and find NSIs in neutrino experiments already sensitive to new physics at ∼20 TeV when the Wilson coefficients are fixed at unity. We also investigate the correlation among multiple operators at the UV scale and find it could change the constraints on SMEFT operators by several orders of magnitude compared with when only one operator is considered. Furthermore, we find that accelerator and reactor neutrino experiments are sensitive to different SMEFT operators, which highlights the complementarity of the two experiment types.


Author(s):  
Sandhya Choubey

Neutrino physics has come a long way and made great strides in the past decades. We discuss the prospects of what more can be learned in this field in the forthcoming neutrino oscillation facilities. We will mostly focus on the potential of the long-baseline experiments and the atmospheric neutrino experiments. Sensitivity of these experiments to standard neutrino oscillation parameters will be presented. We will also discuss the prospects of new physics searches at these facilities.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Mario A. Acero ◽  
Alexis A. Aguilar-Arevalo ◽  
Dairo J. Polo-Toledo

We present a neutrino oscillation analysis of two particular data sets from the Daya Bay and RENO reactor neutrino experiments aiming to study the increase in precision in the oscillation parameters sin22θ13 and the effective mass splitting Δmee2 gained by combining two relatively simple to reproduce analyses available in the literature. For Daya Bay, the data from 217 days between December 2011 and July 2012 were used. For RENO, we used the data from 500 live days between August 2011 and January 2012. We reproduce reasonably well the results of the individual analyses, both rate-only and spectral, defining a suitable χ2 statistic for each case. Finally, we performed a combined spectral analysis and extract tighter constraints on the parameters, with an improved precision between 30 and 40% with respect to the individual analyses considered.


Sign in / Sign up

Export Citation Format

Share Document