scholarly journals Broadband Semielliptical Patch Antenna with Semicircular Ring Slot for WiMax Application

2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Brajraj Shrama ◽  
Vijay Sharma ◽  
K. B. Sharma ◽  
D. Bhatnagar

This paper reports the design and analysis of a semielliptical patch antenna modified by cutting semicircular ring slot in patch geometry and obtained results are discussed. The reported antenna is designed on a multilayered substrate material having two glass epoxy FR-4 substrates separated by a thin foam substrate having thickness 1.0 mm. The size of ground plane is 75 mm×75 mm, whereas the patch dimension along major and minor axes is 23.0 mm and 14.0 mm, respectively. The two modes corresponding to resonance frequencies 3.39 GHz and 3.73 GHz are excited to provide wide impedance bandwidth 21.1% with respect to central frequency with stable radiation patterns. The antenna shows circular polarization with axial ratio bandwidth 5.5% and minimum axial ratio value 1.65 dBi. The radiation patterns of proposed antenna are normal to the surface of patch and are almost identical in shape as required for practical applications. The proposed antenna covers entire median band of WiMax communication systems ranges from 3.40 GHz to 3.6 GHz.

Frequenz ◽  
2020 ◽  
Vol 74 (5-6) ◽  
pp. 191-199
Author(s):  
M. K. Verma ◽  
Binod K. Kanaujia ◽  
J. P. Saini ◽  
Padam S. Saini

AbstractA broadband circularly polarized slotted square patch antenna with horizontal meandered strip (HMS) is presented and studied. The HMS feeding technique provides the good impedance matching and broadside symmetrical radiation patterns. A set of cross asymmetrical slots are etched on the radiating patch to realize the circular polarization. An electrically small stub is added on the edge of the antenna for further improvement in performance. Measured 10-dB impedance bandwidth (IBW) and 3-dB axial ratio bandwidth (ARBW) of the proposed antenna are 32.31 % (3.14–4.35 GHz) and 20.91 % (3.34–4.12 GHz), respectively. The gain of the antenna is varied from 3.5 to 4.86dBi within 3-dB ARBW. Measured results matched well with the simulated results.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Hongmei Liu ◽  
Chenhui Xun ◽  
Shaojun Fang ◽  
Zhongbao Wang

A low-profile dual-band circular polarized (CP) patch antenna with wide half-power beamwidths (HPBWs) is presented for CNSS applications. Simple stacked circular patches are used to achieve dual-band radiation. To enhance the HPBW for the two operation bands, a dual annular parasitic metal strip (D-APMS) combined with reduced ground plane (R-GP) is presented. A single-input feed network based on the coupled line transdirectional (CL-TRD) coupler is also proposed to provide two orthogonal modes at the two frequency bands simultaneously. Experimental results show that the 10 dB impedance bandwidth is 32.7%. The 3 dB axial ratio (AR) bandwidths for the lower and upper bands are 4.1% and 6.5%, respectively. At 1.207 GHz, the antenna has the HPBW of 123° and 103° in the xoz and yoz planes, separately. And the values are 127° and 113° at 1.561 GHz.


Author(s):  
Sanyog Rawat ◽  
Kamlesh Kumar Sharma

<p class="Abstract"><span style="font-weight: normal;">In this paper a new geometry of patch antenna is proposed with improved bandwidth and circular polarization. The radiation performance of circularly polarized rectangular patch antenna is investigated by applying IE3D simulation software and its performance is compared with that of conventional rectangular patch antenna.</span> <span style="font-weight: normal;">Finite Ground truncation technique is used to obtain the desired results. The simulated return loss, axial ratio and smith chart with frequency for the proposed antenna is reported in this paper. It is shown that by selecting suitable ground-plane dimensions, air gap and location of the slits, the impedance bandwidth can be enhanced upto 10.15 % as compared to conventional rectangular patch (4.24%) with an axial ratio bandwidth of 4.05%.</span></p><p> </p><p> </p>


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Wei He ◽  
Yejun He ◽  
Long Zhang ◽  
Sai-Wai Wong ◽  
Wenting Li ◽  
...  

In this paper, a low-profile circularly polarized (CP) conical-beam antenna with a wide overlap bandwidth is presented. Such an antenna is constructed on the two sides of a square substrate. The antenna consists of a wideband monopolar patch antenna fed by a probe in the center and two sets of arc-hook-shaped branches. The monopolar patch antenna is loaded by a set of conductive shorting vias to achieve a wideband vertically polarized electric field. Two sets of arc-hook-shaped parasitic branches connected to the patch and ground plane can generate a horizontally polarized electric field. To further increase the bandwidth of the horizontally polarized electric field, two types of arc-hook-shaped branches with different sizes are used, which can generate another resonant frequency. When the parameters of the arc-hook-shaped branches are reasonably adjusted, a 90° phase difference can be generated between the vertically polarized electric field and the horizontally polarized electric field, so that the antenna can produce a wideband CP radiation pattern with a conical beam. The proposed antenna has a wide impedance bandwidth ( ∣ S 11 ∣ < − 10   dB ) of 35.6% (4.97-7.14 GHz) and a 3 dB axial ratio (AR) bandwidth at phi = 0 ° and theta = 35 ° of about 30.1% (4.97-6.73 GHz). Compared with the earlier reported conical-beam CP antennas, an important feature of the proposed antenna is that the AR bandwidth is completely included in the impedance bandwidth, that is, the overlap bandwidth of ∣ S 11 ∣ < − 10   dB and AR < 3   dB is 30.1%. Moreover, the stable omnidirectional conical-beam radiation patterns can be maintained within the whole operational bandwidth.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Akrem Asmeida ◽  
Zuhairiah Zainal Abidin ◽  
Shaharil Mohd Shah ◽  
Muhammad Ramlee Kamarudin ◽  
Norun Abdul Malek ◽  
...  

Producing a suitable impedance matching between the radiating element and the feedline is the prior hurdle to overcome for a wideband antenna with circular polarisation designs. This study presents a novel antenna consisting of a defected ground structure (DGS) and a crescent-slot radiating patch for broad impedance bandwidth. In addition, a narrow rectangular slot was etched on the ground plane for antenna compactness and outcomes improvement. In order to examine the reliability, two different numerical softwares were compared based on the antenna’s basic structure. Apart from this, an equivalent circuit of the proposed prototype is modelled logically using ADS 2016. The numerical results demonstrate that the impedance bandwidth was about 74.6% for < −10 dB, while the 3 dB axial ratio bandwidth greater than 53% was achieved. In the operational bandwidth of the design, good impedance matching and high efficiency were seen, which shows that this design is appropriate for modern wireless communication systems in ISM and GSM bands.


A small size and very thinwideband dipole microstrip patch antenna for dual frequency operation is designed and analysed in this paper. The dimension of the proposed antenna is 40×30×1.6 mm3 .The proposed antenna is designed using a low cost and reliable FR4 substrate. This FR4 substrate material has a thickness of 1.6 mm, dielectric constant of 4.4 and loss tangent of 0.02. The proposed antennaresonates at 2.19 GHz and 2.5 GHz frequencies with a -10 dB impedance bandwidth of 4.37 GHz, ranging from 1.8 GHz to 6.17 GHz.This shows the proposed antenna bandwidth is increased to 200%. The VSWR of the proposed antenna is less than 2 for entire operating frequency range. Radiation efficiency is above 70% at both of the resonance frequencies. A very low cross polarization is found at all resonance frequencies. CST Microwave Studio is used to design and analyse the proposed antenna.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Manavalan Saravanan ◽  
Madihally Janardhana Srinivasa Rangachar

A single feed circularly polarized patch antenna is presented. The antenna consists of a rhombus-shaped slot incorporated in the radiating patch at its center. The antenna is designed to operate at 2.3 GHz band. The antenna achieves left-hand polarization or right-hand polarization based on the orientation of the slot in the radiating patch. The antenna parameters are synthesized using a high-frequency structure simulator and its characteristics are validated by the Agilent network analyzer (N9925A) and antenna test systems. The measured results obtained agree with simulated results and show that the antenna achieves −10 dB impedance bandwidth of 85 MHz (2.27 GHz–2.355 GHz) for left-hand polarization and 85 MHz (2.26 GHz–2.345 GHz) for right-hand polarization. The antenna gives a 3 dB axial ratio beamwidth of 95°(−35° ≤ AR ≤ 60°) for both left-hand polarization and right-hand polarization along with better 3 dB axial ratio bandwidth of 140° in the operating band. The antenna also achieves a good cross-polarization isolation of −17 dBic for both left-hand and right-hand polarization at its operating frequency. Hence, the antenna is best suited for modern wireless communication systems.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4261 ◽  
Author(s):  
Md. Samsuzzaman ◽  
Mohammad Islam

A simple, compact sickle-shaped printed antenna with a slotted ground plane is designed and developed for broadband circularly polarized (CP) radiation. The sickle-shaped radiator with a tapered feed line and circular slotted square ground plane are utilized to realize the wideband CP radiation feature. With optimized dimensions of 0.29λ × 0.29λ × 0.012λ at 2.22 GHz frequency for the realized antenna parameters, the measured results display that the antenna has a 10 dB impedance bandwidth of 7.70 GHz (126.85%; 2.22–9.92 GHz) and a 3 dB axial ratio (AR) bandwidth of 2.64 GHz (73.33%; 2.28–4.92 GHz). The measurement agrees well with simulation, which proves an excellent circularly polarized property. For verification, the mechanism of band improvement and circular polarization are presented, and the parametric study is carried out. Since, the proposed antenna is a simple design structure with broad impedance and AR bandwidth, which is a desirable feature as a candidate for various wireless communication systems. Because of the easy printed structure and scaling the dimension with broadband CP characteristics, the realized antenna does incorporate in a number of CP wireless communication applications.


A reconfigurable asymmetric patch antenna with arced corners loaded with a rectangular slot and a T slot on the partial ground used for UWB and Ku band applications. The discussion is carried out into three segments. In the first segment, the design of patch antenna proposed asymmetric arcs at the corner, two side slits, and one slot in the middle of the patch while a T-slot integrated on the partial ground plane. This presented antenna covers an impedance bandwidth ranging from 3.0 GHz to 16.2GHz with a fractional amount of 132%. It is found that a wide band of 3.0 GHz to 10.7 GHz is achieved by using a T-slot on the partial ground plane with a normal rectangular patch while 10.8 GHz to 16.2 GHz is attained by using two corners arcs with two small slits on the patch. The experimental result shows good agreement of 3-dB axial ratio bandwidth and radiation characteristics with the simulated result of the proposed antenna. The second segment proposes an extracted equivalent circuit model for patch and ground plane of corner arc monopole antenna using EM software package in the ADS platform and made a good agreement with the proposed antenna. Finally in the third segment RF PIN diode is embedded in a rectangular slot of the patch which achieves desired frequency shifting in the required band of operation.


2012 ◽  
Vol 1 (2) ◽  
pp. 97-106
Author(s):  
Sanyog Rawat ◽  
K K Sharma

In this paper a new geometry of circularly polarized patch antenna is proposed with improved bandwidth. The radiation performance of proposed patch antenna is investigated using IE3D simulation software and its performance is compared with that of conventional rectangular patch antenna. The simulated return loss, axial ratio and impedance with frequency for the proposed antenna are reported in this paper. It is shown that by selecting suitable ground-plane dimensions, air gap and location of the slots, the impedance bandwidth can be enhanced upto 10.15% as compared to conventional rectangular patch (4.24%) with an axial ratio bandwidth of 4.05%.DOI: 10.18495/comengapp.12.097106


Sign in / Sign up

Export Citation Format

Share Document