scholarly journals Antibacterial Activity of Murrayaquinone A and 6-Methoxy-3,7-dimethyl-2,3-dihydro-1H-carbazole-1,4(9H)-dione

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Biswanath Chakraborty ◽  
Suchandra Chakraborty ◽  
Chandan Saha

The antibacterial activity of Murrayaquinone A (10), a naturally occurring carbazoloquinone alkaloid, and 6-methoxy-3,7-dimethyl-2,3-dihydro-1H-carbazole-1,4(9H)-dione (11), a synthetic carbazoloquinone, both obtained during the development of the synthesis of Carbazomycin G, having unique quinone moiety, was studied against Gram-positive (Bacillus subtilisandStaphylococcus aureus) and Gram-negative (Escherichia coliandPseudomonassp.) bacteria. Compound10showed antibacterial activities against both ofEscherichia coliandStaphylococcus aureuswhereas compound11indicated the activity againstStaphylococcus aureusonly. Both compounds10and11exhibited minimum inhibitory concentration (MIC) of 50 μg mL−1againstStaphylococcus aureus.

2015 ◽  
Vol 761 ◽  
pp. 402-406 ◽  
Author(s):  
Siti Aishah Mohd Hanim ◽  
Nik Ahmad Nizam Nik Malek ◽  
Zaharah Ibrahim ◽  
Mashitah Mad Salim ◽  
Nur Isti'anah Ramli ◽  
...  

The antibacterial activity of functionalized zeolite NaY (CBV100) with different concentrations of 3-aminopropyltriethoxysilane (APTES) (0.01, 0.05, 0.20 and 0.40 M) was studied against Staphylococcus aureus ATCC 6538 (Gram positive) and Escherichia coli ATCC 11229 (Gram negative) through disc diffusion technique (DDT). The characterization of functionalized zeolite NaY with fourier transform infrared (FTIR) spectroscopy indicated the attachment of APTES on zeolite NaY. Through DDT, the inhibition zone of functionalized zeolite NaY increased proportionally to the amount of the amine-functional group attached onto zeolite NaY. Functionalized zeolite NaY showed higher antibacterial activity against Gram-positive compared to Gram-negative bacteria. It can be concluded from this study that amine-functionalized zeolite NaY shows evidence of antibacterial activities.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Amal Ramzi ◽  
Bouchra Oumokhtar ◽  
Yassine Ez zoubi ◽  
Touria Filali Mouatassem ◽  
Moussa Benboubker ◽  
...  

Background. The microbiological risk of the hospital environment, including inert surfaces, medical devices, and equipment, represents a real problem. Objective. This study is aimed at demonstrating and assessing the antibacterial activity of three synthetic disinfectants classified as quaternary ammoniums on different bacterial strains (Gram-negative and Gram-positive like Escherichia coli, Klebsiella pneumoniae, Enterobacter cloacae, Pseudomonas aeruginosa, Acinetobacter baumannii, and Staphylococcus aureus) isolated from the hospital environment. The reference strains included Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 29213, and Pseudomonas aeruginosa ATCC 27853 used as negative control strains. Method. Three quaternary ammonium disinfectants were tested: DDN9® (0.5%) which contains didecylmethylpolyoxyethylammonium propionate as an active substance, spray (0.4%) containing quaternary ammonium compounds, and Phagosurf ND® (0.4%) with didecyldimethylammonium chloride. Their effect was evaluated using the disk diffusion technique and the broth dilution methods, allowing the Minimum Inhibitory Concentration (MIC) and then the Minimum Bactericidal Concentration (MBC). Result. Only the growth of Gram-positive bacteria and some strains of Gram-negative bacteria were inhibited by the three synthetic disinfectants. NDD9® demonstrated an antibacterial effect only against the Gram-positive strains (S. aureus and S. aureus ATCC 29213) with a MIC of 0.25 mg/ml. The disinfectant spray showed effect against all four strains including E. coli (9), S. aureus, E. coli ATCC 25922, and P. aeruginosa ATCC 27853 with an inhibitory concentration of 4 mg/ml, while the growth of S. aureus ATCC 29213 was inhibited at 2 mg/ml. The third disinfectant, Phagosurf ND®, inhibited only the growth of S. aureus ATCC 29213 at a MIC of 4 mg/ml. Conclusion. This study is the first here in Morocco to evaluate the bacterial activity of products intended for the control of the healthcare environment. The results obtained on the three disinfectants tested reveal an ineffectiveness against some isolated strains from the hospital environment.


2020 ◽  
Vol 15 (6) ◽  
pp. 665-679
Author(s):  
Alok K. Srivastava ◽  
Lokesh K. Pandey

Background: [1, 3, 4]oxadiazolenone core containing chalcones and nucleosides were synthesized by Claisen-Schmidt condensation of a variety of benzaldehyde derivatives, obtained from oxidation of substituted 5-(3/6 substituted-4-Methylphenyl)-1, 3, 4-oxadiazole-2(3H)-one and various substituted acetophenone. The resultant chalcones were coupled with penta-O-acetylglucopyranose followed by deacetylation to get [1, 3, 4] oxadiazolenone core containing chalcones and nucleosides. Various analytical techniques viz IR, NMR, LC-MS and elemental analysis were used to confirm the structure of the synthesised compounds.The compounds were targeted against Bacillus subtilis, Staphylococcus aureus and Escherichia coli for antibacterial activity and Aspergillus flavus, Aspergillus niger and Fusarium oxysporum for antifungal activity. Methods: A mixture of Acid hydrazides (3.0 mmol) and N, Nʹ- carbonyl diimidazole (3.3 mmol) in 15 mL of dioxane was refluxed to afford substituted [1, 3, 4]-oxadiazole-2(3H)-one. The resulted [1, 3, 4]- oxadiazole-2(3H)-one (1.42 mmol) was oxidized with Chromyl chloride (1.5 mL) in 20 mL of carbon tetra chloride and condensed with acetophenones (1.42 mmol) to get chalcones 4. The equimolar ratio of obtained chalcones 4 and β -D-1,2,3,4,6- penta-O-acetylglucopyranose in presence of iodine was refluxed to get nucleosides 5. The [1, 3, 4] oxadiazolenone core containing chalcones 4 and nucleosides 5 were tested to determined minimum inhibitory concentration (MIC) value with the experimental procedure of Benson using disc-diffusion method. All compounds were tested at concentration of 5 mg/mL, 2.5 mg/mL, 1.25 mg/mL, 0.62 mg/mL, 0.31 mg/mL and 0.15 mg/mL for antifungal activity against three strains of pathogenic fungi Aspergillus flavus (A. flavus), Aspergillus niger (A. niger) and Fusarium oxysporum (F. oxysporum) and for antibacterial activity against Gram-negative bacterium: Escherichia coli (E. coli), and two Gram-positive bacteria: Staphylococcus aureus (S. aureus) and Bacillus subtilis(B. subtilis). Result: The chalcones 4 and nucleosides 5 were screened for antibacterial activity against E. coli, S. aureus and B. subtilis whereas antifungal activity against A. flavus, A. niger and F. oxysporum. Compounds 4a-t showed good antibacterial activity whereas compounds 5a-t containing glucose moiety showed better activity against fungi. The glucose moiety of compounds 5 helps to enter into the cell wall of fungi and control the cell growth. Conclusion: Chalcones 4 and nucleosides 5 incorporating [1, 3, 4] oxadiazolenone core were synthesized and characterized by various spectral techniques and elemental analysis. These compounds were evaluated for their antifungal activity against three fungi; viz. A. flavus, A. niger and F. oxysporum. In addition to this, synthesized compounds were evaluated for their antibacterial activity against gram negative bacteria E. Coli and gram positive bacteria S. aureus, B. subtilis. Compounds 4a-t showed good antibacterial activity whereas 5a-t showed better activity against fungi.


2010 ◽  
Vol 5 (1) ◽  
pp. 1934578X1000500 ◽  
Author(s):  
Ashraf El-Bassuony ◽  
Sameh AbouZid

A novel prenylated flavanoid, isonymphaeol-D (1), together with two known compounds, isonymphaeol-B (2) and nymphaeol-B (3), were isolated from Egyptian propolis. The structures of the isolated compounds were determined by various spectroscopic methods. 1 exhibited antibacterial activity against Gram-positive (Bacillus cereus, Staphylococcus aureus) and Gram-negative strains (Serratia sp., Pseudomonos sp., Escherichia coli).


2017 ◽  
Vol 901 ◽  
pp. 124-132
Author(s):  
Artania Adnin Tri Suma ◽  
Tutik Dwi Wahyuningsih ◽  
Deni Pranowo

Some novel N-phenylpyrazolines were synthesized and investigated for their antibacterial activitiy. Chalcones 2-4 which were prepared from acetophenone and veratraldehyde derivatives were reacted with phenylhydrazine to give N-phenylpyrazolines 5-7. All of the synthesized compounds were characterized using FTIR, GC-MS, and NMR spectrometers. Further, antibacterial activity of N-phenylpyrazolines were evaluated by agar well-diffusion method against Staphylococcus aureus, Bacillus cereus, Bacillus subtilis, Escherichia coli, and Shigella flexneri. The highest activity (highest inhibition zone) of compound 5 was 2.6 mm (at 1000 ppm) against B. subtillis, compound 6 was 7.25 mm (at 1000 ppm) against S. aureus, and compound 7 was 6.75 mm (at 500 ppm) against S. aureus. The results indicated that compound 6 and 7 exhibited promising antibacterial activity.


2019 ◽  
Vol 9 (3) ◽  
pp. 33-35
Author(s):  
S. Nagalakshmi ◽  
P. Saranraj ◽  
P. Sivasakthivelan

Essential oils and volatile constituents extracted from Aromatic plants are frequently used in folk medicine for prevention and treatment of different human diseases. The urge to develop alternative treatment strategies follows three different directions. In the present study, an attempt has been planned to determine the Minimum Inhibitory Concentration (MIC) and Percentage Growth Inhibition of Essential oils against two Gram positive bacterial pathogens, Staphylococcus aureus and Bacillus subtilis. The Essential oils selected for the present study was collected from Sidha Medicine Shop, Tirupattur, Vellore district, Tamil Nadu, India. The Broth dilution method was used for the determination of Minimum Inhibitory Concentration (MIC) of Essential oils. The Minimum Inhibitory Concentration (MIC) studies were conducted by using various concentrations of Essential oils viz., 25 µl/ml, 50 µl/ml, 75 µl/ml and 100 µ/ml. The Essential oils exhibits inhibitory activity against Gram positive bacteria in all the concentrations. Among the seven Essential oils tested, Mahualongif oil has showed maximum percentage bacterial growth inhibition when compared to other Essential oils. The inhibitory activity of Mahualongif oil was observed more in Staphylococcus aureus when compared to Bacillus subtilis. For Staphylococcus aureus, lowest inhibitory percentage was noticed in Pungam oil and for Bacillus subtilis lowest inhibitory percentage was noticed in Coconut oil. Keywords: Essential oils, Minimum inhibitory concentration (MIC), Percentage bacterial growth inhibition, Bacillus subtilis and Staphylococcus aureus.


Author(s):  
Agus Purwanggana ◽  
Esti Mumpuni ◽  
Esti Mulatsari

Objective: The main objective of this research were screened in vitro and in silico of 1,5-bis (3'-ethoxy-4'-hydroxyphenyl)-1,4-pentadiene-3-one as potential antibacterial agents.Methods: The in vitro antibacterial study was carried against Staphylococcus aureus, Staphylococcus epidermidis (gram positive) and Escherichia coli, Salmonella thypi (gram negative) using broth dilution method to determine Minimum Inhibitory Concentration (MIC), disc diffusion method to determine the diameter of inhibition zone. In silico antibacterial study was carried using computational software Protein-Ligand ANT System (PLANTS), computational docking was carried using receptor with Protein Data Bank (PDB) file 3MZD. The structures were optimized prior docking using YASARA, and MarvinSketch. The results of antibacterial testing were compared to two positive control drugs i. e amoxicillin and cefadroxil.Results: In vitro evaluation showed that 1,5-bis (3'-ethoxy-4'-hydroxyphenyl)-1,4-pentadiene-3-one has a better antibacterial activity than amoxicillin and cefadroxil with a Minimum Inhibitory Concentration (MIC) of 0.15 ppm and diameter of inhibition zone of 11.27±0.31, 11.35±0.39, 11.25±0.33, and 11.05±0.45 mm in Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, and Salmonella thypi, respectively. These results in line with in silico evaluation that showed 1,5-bis (3'-ethoxy-4'-hydroxyphenyl)-1,4-pentadiene-3-one has more negative docking score than amoxicillin, cefadroxil, and cloxacillin acyl as a native ligand on the 3MZD receptor.Conclusion: This results obtained in this research work were 1,5-bis (3'-ethoxy-4'-hydroxyphenyl)-1,4-pentadiene-3-one compound potential as an antibacterial agent. 


2018 ◽  
Vol 24 (6) ◽  
pp. 327-332 ◽  
Author(s):  
Yogesh D. Mane ◽  
Smita S. Patil ◽  
Dhanraj O. Biradar ◽  
Bhimrao C. Khade

Abstract Ten 5-bromoindole-2-carboxamides were synthesized, characterized and evaluated for antibacterial activity against pathogenic Gram-negative bacteria Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa and Salmonella Typhi using gentamicin and ciprofloxacin as internal standards. Compounds 7a–c, 7g and 7h exhibit high antibacterial activity with a minimum inhibitory concentration (MIC) of 0.35–1.25 μg/mL. Compounds 7a–c exhibit antibacterial activities that are higher than those of the standards against E. coli and P. aeruginosa.


2021 ◽  
Vol 11 (1) ◽  
pp. 108-109
Author(s):  
Kinjal H Shah ◽  
Piyush M. Patel

Evaluation of antimicrobial activity was performed by cup-plate method. The test microorganisms used for the antimicrobial activity were four bacterial species (two Gram positive and two Gram negative) – Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeuroginosa,Escherichia coli. The test microorganisms used for the antimicrobial activity were four bacterial species (two Gram +ve and two Gram -ve) Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeuroginosa,Escherichia coli.  


2020 ◽  
Vol 54 (1 (251)) ◽  
pp. 12-16
Author(s):  
G.G. Tokmajyan ◽  
L.V. Karapetyan ◽  
R.V. Paronikyan ◽  
H.M. Stepanyan

ring were successfully synthesized based on thiosemicarbazones of 3-acetyl-2-oxo-2,5-dihydrofurans. The synthesized compounds exhibited moderate to defined antibacterial activities against Gram-positive (Staphylococcus aureus 209P and 1) and Gram-negative (Shigella Flexneri 6858, Esherichia coli 0–55) bacteria compared to furazolidone.


Sign in / Sign up

Export Citation Format

Share Document