scholarly journals Strong Convergence Theorems for Quasi-Bregman Nonexpansive Mappings in Reflexive Banach Spaces

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Mohammed Ali Alghamdi ◽  
Naseer Shahzad ◽  
Habtu Zegeye

We study a strong convergence for a common fixed point of a finite family of quasi-Bregman nonexpansive mappings in the framework of real reflexive Banach spaces. As a consequence, convergence for a common fixed point of a finite family of Bergman relatively nonexpansive mappings is discussed. Furthermore, we apply our method to prove strong convergence theorems of iterative algorithms for finding a common solution of a finite family equilibrium problem and a common zero of a finite family of maximal monotone mappings. Our theorems improve and unify most of the results that have been proved for this important class of nonlinear mappings.

Filomat ◽  
2014 ◽  
Vol 28 (7) ◽  
pp. 1525-1536 ◽  
Author(s):  
Habtu Zegeye

In this paper, we study a strong convergence theorem for a common fixed point of a finite family of Bregman strongly nonexpansive mappings in the framework of reflexive real Banach spaces. As a consequence, we prove convergence theorem for a common fixed point of a finite family of Bergman relatively nonexpansive mappings. Furthermore, we apply our method to prove strong convergence theorems of iterative algorithms for finding a common zero of a finite family of Bregman inverse strongly monotone mappings and a solution of a finite family of variational inequality problems.


2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
H. Zegeye ◽  
N. Shahzad

We provide an iterative process which converges strongly to a common fixed point of finite family of asymptoticallyk-strict pseudocontractive mappings in Banach spaces. Our theorems improve and unify most of the results that have been proved for this important class of nonlinear operators.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
H. Zegeye ◽  
N. Shahzad

We prove a strong convergence theorem for a common fixed point of a finite family of right Bregman strongly nonexpansive mappings in the framework of real reflexive Banach spaces. Furthermore, we apply our method to approximate a common zero of a finite family of maximal monotone mappings and a solution of a finite family of convex feasibility problems in reflexive real Banach spaces. Our theorems complement some recent results that have been proved for this important class of nonlinear mappings.


2021 ◽  
Vol 110 (124) ◽  
pp. 121-129
Author(s):  
Seyit Temir

We introduce a new iterative scheme for finding a common fixed point of three Suzuki?s generalized nonexpansive mappings in Banach spaces. We establish weak and strong convergence theorems for three Suzuki?s generalized nonexpansive mappings. The results obtained extend and improve the recent ones announced by Ali et al., Maniu and Thakur et al..


2020 ◽  
Vol 9 (3) ◽  
pp. 681-690
Author(s):  
Khairul Saleh ◽  
Hafiz Fukhar-ud-din

Abstract In this work, we propose an iterative scheme to approach common fixed point(s) of a finite family of generalized multi-valued nonexpansive mappings in a CAT(0) space. We establish and prove convergence theorems for the algorithm. The results are new and interesting in the theory of $$CAT\left( 0\right) $$ C A T 0 spaces and are the analogues of corresponding ones in uniformly convex Banach spaces and Hilbert spaces.


Sign in / Sign up

Export Citation Format

Share Document