Influence of Sonication on the Stability and Thermal Properties of Al2O3Nanofluids
Nanofluids containing Al2O3nanoparticles (either 11 or 30 nm in size) dispersed in distilled water at low concentrations (0.125–0.5 wt%) were prepared using two different ultrasonic devices (a probe and a bath sonicator) as the dispersant. The effect of the ultrasonic system on the stability and thermal diffusivity of the nanofluids was investigated. Thermal diffusivity measurements were conducted using a photopyroelectric technique. The dispersion characteristics and morphology of the nanoparticles, as well as the optical absorption properties of the nanofluids, were studied using photon cross correlation spectroscopy with a Nanophox analyzer, transmission electron microscopy, and ultraviolet-visible spectroscopy. At higher particle concentration, there was greater enhancement of the thermal diffusivity of the nanofluids resulting from sonication. Moreover, greater stability and enhancement of thermal diffusivity were obtained by sonicating the nanofluids with the higher power probe sonicator prior to measurement.