magnetic nanoparticle
Recently Published Documents


TOTAL DOCUMENTS

1791
(FIVE YEARS 429)

H-INDEX

90
(FIVE YEARS 12)

Biosensors ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 36
Author(s):  
Dharanivasan Gunasekaran ◽  
Yoram Gerchman ◽  
Sefi Vernick

Detection of microbial contamination in water is imperative to ensure water quality. We have developed an electrochemical method for the detection of E. coli using bi-functional magnetic nanoparticle (MNP) conjugates. The bi-functional MNP conjugates were prepared by terminal-specific conjugation of anti-E. coli IgG antibody and the electroactive marker ferrocene. The bi-functional MNP conjugate possesses both E. coli-specific binding and electroactive properties, which were studied in detail. The conjugation efficiency of ferrocene and IgG antibodies with amine-functionalized MNPs was investigated. Square-wave voltammetry enabled the detection of E. coli concentrations ranging from 101–107 cells/mL in a dose-dependent manner, as ferrocene-specific current signals were inversely dependent on E. coli concentrations, completely suppressed at concentrations higher than 107 cells/mL. The developed electrochemical method is highly sensitive (10 cells/mL) and, coupled to magnetic separation, provides specific signals within 1h. Overall, the bi-functional conjugates serve as ideal candidates for electrochemical detection of waterborne bacteria. This approach can be applied for the detection of other bacteria and viruses.


Nanomedicine ◽  
2022 ◽  
Author(s):  
Dhruba Dhar ◽  
Swachhatoa Ghosh ◽  
Soumen Das ◽  
Jyotirmoy Chatterjee

Rapid vascular growth, infiltrative cells and high tumor heterogenicity are some glioblastoma multiforme (GBM) characteristics, making it the most lethal form of brain cancer. Low efficacy of the conventional treatment modalities leads to rampant disease progression and a median survival of 15 months. Magnetic nanoparticles (MNPs), due to their unique physical features/inherent abilities, have emerged as a suitable theranostic platform for targeted GBM treatment. Thus, new strategies are being designed to enhance the efficiency of existing therapeutic techniques such as chemotherapy, radiotherapy, and so on, using MNPs. Herein, the limitations of the current therapeutic strategies, the role of MNPs in mitigating those inadequacies, recent advances in the MNP-based theranostics of GBM and possible future directions are discussed.


Biosensors ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 29
Author(s):  
Cristina Gordillo-Marroquín ◽  
Héctor J. Sánchez-Pérez ◽  
Anaximandro Gómez-Velasco ◽  
Miguel Martín ◽  
Karina Guillén-Navarro ◽  
...  

Despite its reduced sensitivity, sputum smear microscopy (SSM) remains the main diagnostic test for detecting tuberculosis in many parts of the world. A new diagnostic technique, the magnetic nanoparticle-based colorimetric biosensing assay (NCBA) was optimized by evaluating different concentrations of glycan-functionalized magnetic nanoparticles (GMNP) and Tween 80 to improve the acid-fast bacilli (AFB) count. Comparative analysis was performed on 225 sputum smears: 30 with SSM, 107 with NCBA at different GMNP concentrations, and 88 with NCBA-Tween 80 at various concentrations and incubation times. AFB quantification was performed by adding the total number of AFB in all fields per smear and classified according to standard guidelines (scanty, 1+, 2+ and 3+). Smears by NCBA with low GMNP concentrations (≤1.5 mg/mL) showed higher AFB quantification compared to SSM. Cell enrichment of sputum samples by combining NCBA-GMNP, incubated with Tween 80 (5%) for three minutes, improved capture efficiency and increased AFB detection up to 445% over SSM. NCBA with Tween 80 offers the opportunity to improve TB diagnostics, mainly in paucibacillary cases. As this method provides biosafety with a simple and inexpensive methodology that obtains results in a short time, it might be considered as a point-of-care TB diagnostic method in regions where resources are limited.


2022 ◽  
Vol 1048 ◽  
pp. 83-88
Author(s):  
K. Ajith ◽  
Archana Sumohan Pillai ◽  
I.V. Muthu Vijayan Enoch ◽  
A. Brusly Solomon

The current investigation aims to synthesize MgFe2O4 magnetic nanoparticle and measure the thermal conductivity of MgFe2O4 ferrofluid. Prepared MgFe2O4 nanoparticle's structural characterization, the concentration of constituents, and surface morphology were analyzed using XRD, EDAX, and TEM respectively. This study also analyses the influence of magnetic flux on the thermal conductivity of MgFe2O4/ EG: H2O (60:40) based ferrofluids formed by the two-step method. Thermal conductivity of ferrofluid measured at different volume fractions (ranging from 0.01% to 0.20%) show that thermal conductivity augmented with an escalation in volume fraction and the highest enhancement of 10.32% was reached at 0.20% volume fraction. Results indicate that the applied magnetic flux improves the thermal conductivity of ferrofluid from 10.32% to 14.75% at 0.20% volume fraction and 350 Gauss Magnetic flux.


Author(s):  
D. Y. Zablotsky ◽  
A. Mezulis ◽  
E. Blums ◽  
M. M. Maiorov

We report focused light-induced activation of intense magnetic microconvection mediated by suspended magnetic nanoparticles in microscale two-dimensional optothermal grids. Fully anisotropic control of microflow and mass transport fluxes is achieved by engaging the magnetic field along one or the other preferred directions. The effect is based on the recently described thermal diffusion–magnetomechanical coupling in synthetic magnetic nanofluids. We expect that the new phenomenon can be applied as an efficient all-optical mixing strategy in integrated microfluidic devices. This article is part of the theme issue ‘Transport phenomena in complex systems (part 2)’.


2022 ◽  
Vol 120 (1) ◽  
pp. 012407
Author(s):  
Thinh Q. Bui ◽  
Adam J. Biacchi ◽  
Cindi L. Dennis ◽  
Weston L. Tew ◽  
Angela R. Hight Walker ◽  
...  

Separations ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 3
Author(s):  
Dan Wang ◽  
Xueguo Chen ◽  
Zhu Ming ◽  
Limin Jiang ◽  
Yan Zhou

A specific and sensitive approach using magnetic nanoparticle solid-phase extraction combined with gas chromatography–mass spectrometry (GC-MS) was carried out and applied in the simultaneous determination of 16 kinds of synthetic cathinones in human urine. The functionalized extraction material (Fe3O4/NH2-MWCNTs) was synthesized and factors affecting the extraction efficiency were all tested. Under the optimized conditions of magnetic nanoparticle solid-phase extraction, the determination of synthetic cathinones in human urine was carried out with GC-MS. Good linear relationships of 16 kinds of synthetic cathinones were obtained in the range of 0.005–5.00 μg/mL with the correlation coefficients (r) ranging from 0.9901 to 0.9979, the limits of detection were in the range between 0.005 and 0.01 μg/mL, and the limits of quantitation were between 0.01 and 0.02 μg/mL. Furthermore, the average intra-day precisions were below 8.90%, the average inter-day precisions were less than 9.52%, and the average recoveries were between 87.03% and 99.13%, respectively. The results show the advantages of the approach in the determination of trace synthetic cathinones in complex matrixes, such as environmentally friendly, fast detection, high efficiency and sensitivity. The practical application indicated that this method could provide scientific basis for the determination of drugs of abuse in forensic laboratories.


Sign in / Sign up

Export Citation Format

Share Document