scholarly journals Least-Squares Based and Gradient Based Iterative Parameter Estimation Algorithms for a Class of Linear-in-Parameters Multiple-Input Single-Output Output Error Systems

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Cheng Wang ◽  
Tao Tang ◽  
Dewang Chen

The identification of a class of linear-in-parameters multiple-input single-output systems is considered. By using the iterative search, a least-squares based iterative algorithm and a gradient based iterative algorithm are proposed. A nonlinear example is used to verify the effectiveness of the algorithms, and the simulation results show that the least-squares based iterative algorithm can produce more accurate parameter estimates than the gradient based iterative algorithm.

2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Weili Xiong ◽  
Wei Fan ◽  
Rui Ding

This paper studies least-squares parameter estimation algorithms for input nonlinear systems, including the input nonlinear controlled autoregressive (IN-CAR) model and the input nonlinear controlled autoregressive autoregressive moving average (IN-CARARMA) model. The basic idea is to obtain linear-in-parameters models by overparameterizing such nonlinear systems and to use the least-squares algorithm to estimate the unknown parameter vectors. It is proved that the parameter estimates consistently converge to their true values under the persistent excitation condition. A simulation example is provided.


Author(s):  
Feiyan Chen ◽  
Feng Ding

Multiple-input multiple-output systems can be decomposed into several multiple-input single-output systems. This paper studies identification problems of multiple-input single-output nonlinear Box–Jenkins systems. In order to improve the computational efficiency, we decompose a multiple-input nonlinear Box–Jenkins system into two subsystems, one containing the parameters of the linear block, the other containing the parameters of the nonlinear block. A decomposition based maximum likelihood generalized extended least squares algorithm is derived for identifying the parameters of the system by using the maximum likelihood principle. Furthermore, a decomposition based generalized extended least squares algorithm is presented for comparison. The numerical example indicates that the proposed algorithms can effectively estimate the parameters of the nonlinear systems and can generate more accurate parameter estimates compared with existing methods.


Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Jiling Ding

This paper considers the identification problem of multi-input-output-error autoregressive systems. A hierarchical gradient based iterative (H-GI) algorithm and a hierarchical least squares based iterative (H-LSI) algorithm are presented by using the hierarchical identification principle. A gradient based iterative (GI) algorithm and a least squares based iterative (LSI) algorithm are presented for comparison. The simulation results indicate that the H-LSI algorithm can obtain more accurate parameter estimates than the LSI algorithm, and the H-GI algorithm converges faster than the GI algorithm.


1984 ◽  
Vol 21 (3) ◽  
pp. 268-277 ◽  
Author(s):  
Vijay Mahajan ◽  
Subhash Sharma ◽  
Yoram Wind

In marketing models, the presence of aberrant response values or outliers in data can distort the parameter estimates or regression coefficients obtained by means of ordinary least squares. The authors demonstrate the potential usefulness of the robust regression analysis in treating influential response values in marketing data.


Author(s):  
James R. McCusker ◽  
Kourosh Danai

A method of parameter estimation was recently introduced that separately estimates each parameter of the dynamic model [1]. In this method, regions coined as parameter signatures, are identified in the time-scale domain wherein the prediction error can be attributed to the error of a single model parameter. Based on these single-parameter associations, individual model parameters can then be estimated for iterative estimation. Relative to nonlinear least squares, the proposed Parameter Signature Isolation Method (PARSIM) has two distinct attributes. One attribute of PARSIM is to leave the estimation of a parameter dormant when a parameter signature cannot be extracted for it. Another attribute is independence from the contour of the prediction error. The first attribute could cause erroneous parameter estimates, when the parameters are not adapted continually. The second attribute, on the other hand, can provide a safeguard against local minima entrapments. These attributes motivate integrating PARSIM with a method, like nonlinear least-squares, that is less prone to dormancy of parameter estimates. The paper demonstrates the merit of the proposed integrated approach in application to a difficult estimation problem.


Sign in / Sign up

Export Citation Format

Share Document