scholarly journals A Miniaturized Frequency Selective Surface Based on Square Loop Aperture Element

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Wenxing Li ◽  
Chunming Wang ◽  
Yong Zhang ◽  
Yingsong Li

We propose a miniaturized band-pass frequency selective surface (FSS) with periodic unit cell structure. The proposed FSS is realized by symmetrically bending the edges of the square loop aperture element, by which our proposed FSS increases the resonant length, and, hence, reduces its size. In this FSS, each unit cell has a dimension of 0.0538λ × 0.0538λ, whereλrepresents the wavelength of the corresponding resonant frequency. Both the theoretical analysis and simulation results demonstrate that our proposed FSS, having high polarization stability and angle stability, can achieve smaller size in comparison with the previously proposed structures.

2015 ◽  
Vol 16 (2) ◽  
pp. 281
Author(s):  
Tariq Rahim ◽  
Jiodong Xu

A low profile multi layer miniaturized unit cell frequency selective surface (FSS) with second-order band-pass response is design. The metallic layers in the form of capacitive patches and inductive grids are separated by dielectric substrates. The non-resonant sub-wavelength unit cells with unit cell dimensions and periodicities on the order of 0.15λ. The overall thickness of approximately 0.03λ is designed which is useful at lower frequencies with long wavelengths. The FSS exhibit a stable frequency response to different angles of incidence and polarizations. The analysis and synthesis of the FSS is done using equivalent circuit method and simulated using CST microwave studio at X-band.


2019 ◽  
Vol 11 (08) ◽  
pp. 797-805 ◽  
Author(s):  
Anupam Dey ◽  
Rajarshi Sanyal

AbstractThis Paper reveals a novel single layer five band frequency selective surface (FSS). Novelties of the proposed FSS lie in its five closely spaced stop bands at 2.4, 3.38, 4.82, 6.32, and 7.75 GHz as well as the reduced single layer structural thickness (0.0016 λ0) and the miniaturized unit cell size (0.0656 λ0) at lower resonant frequency as compared to the existing multiband FSS. The unit cell structure consists of six octagonal concentric interconnected loops. Adjacent loop interconnection technique reduces the cell size by more than 44%. Furthermore, arrow-shaped rings are also introduced on each corner of the outermost octagonal loop, and using this technique approximate 23% cell miniaturization can be achieved. In addition, the proposed FSS exhibits excellent angular stability.


2020 ◽  
pp. 100-103
Author(s):  
Singaram M ◽  
Krishna Kumar E ◽  
Chandraprasad V ◽  
Finney Daniel Shadrach ◽  
Gowthaman Manoharan

A single layer novel compact frequency selective surface which is used in reflector antenna is designed and simulated. The proposed unit cell reflects electromagnetic waves in K and Ka band with maximum reflection occurring at 22.62 GHz and 35.44 GHz respectively. The designed FSS find its application in satellite communication. A crossed dipole structure in center and two-legged structure in corners with square loop in each quadrant makes the FSS unit cell structure. The FSS is designed with oblique incidence for transverse electric and transverse magnetic polarization with return loss 0.3 dB in 22.62 GHz and less than 0.5 dB in 35.44 GHz. The proposed work shows frequency independence against oblique angle of incidence. The simulated result from CST microwave studio is compared with other similar works.


Author(s):  
Bimal Raj Dutta ◽  
Binod Kumar Kanaujia ◽  
Chhaya Dalela

An elliptic band pass response three-dimensional Frequency Selective Surface (3D FSS) is designed from a single unit cell of 2D array of two shielded microstrip lines. The designed FSS provides pseudo-elliptic band-pass frequency response (5.4 – 9.6) GHz with its application in long-distance radio telecommunications and space communications etc. The four transmission zeros at 5.4GHz, 9.6GHz, 12.4GHz and 15GHz provides wide out-of-band frequency rejection. The 3D FSS is independent of the variations in the incident angle of the plane wave up to 60 degree. Each unit cell is a combination of two shielded microstrip lines with one having an air gap and the other one having in between rectangular metallic plate. When a TE polarized plane wave incidents perpendicular to the perfect electric conductor (PEC) boundary walls shielded microstrip lines, it results in two quasi-TEM modes namely air and substrate mode. The 3D FSS consists of multiple resonators with a multimode cavity having number of propagating modes. These resonating modes in phase provide transmission poles and when out of phase give transmission zeros. The 3D FSS structure is simulated using Ansys HFSS software with improved performance over 2DFSS, for many practical applications such as antenna sub-reflector, radomes and spatial filters.


2021 ◽  
Vol 10 (2) ◽  
pp. 27-38
Author(s):  
A. Kapoor ◽  
R. Mishra ◽  
P. Kumar

In this article, a frequency selective surface (FSS) based compact wideband printed antenna radiator with improved gain and directivity is proposed for sub-6 GHz 5G wireless networking applications. Due to their inherent property of possessing spatial filtering characteristics, FSSs are attracting the interest of researchers. An approach for increasing the gain and the directivity by integrating a band pass FSS on a compact built patch antenna radiator is proposed here. The architecture equations for designing the band pass FSS using double square loop geometry are defined. The printed patch antenna radiator (PAR) and a double square loop frequency selective surface (DSLFSS) are designed and integrated. The simulation results are verified using the results from the measuring setup. The output response is giving a fractional bandwith of 19.14% with 5.5 dBi gain and 6.2 dBi of directivity and thus makes it the good choice for 5G applications.


Author(s):  
Alfredo Gomes Neto ◽  
Jefferson Costa e Silva ◽  
Alexandre Jean Rene Serres ◽  
Marina de Oliveira Alencar ◽  
Ianes Barbosa Grecia Coutinho ◽  
...  

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 622
Author(s):  
Nur Biha Mohamed Nafis ◽  
Mohamed Himdi ◽  
Mohamad Kamal A Rahim ◽  
Osman Ayop ◽  
Raimi Dewan

Acquiring an optically transparent feature on the wideband frequency selective surface (FSS), particularly for smart city applications (building window and transportation services) and vehicle windows, is a challenging task. Hence, this study assessed the performance of optically transparent mosaic frequency selective surfaces (MFSS) with a conductive metallic element unit cell that integrated Koch fractal and double hexagonal loop fabricated on a polycarbonate substrate. The opaque and transparent features of the MFSS were studied. While the study on opaque MFSS revealed the advantage of having wideband responses, the study on transparent MFSS was performed to determine the optical transparency application with wideband feature. To comprehend the MFSS design, the evolutionary influence of the unit cell on the performance of MFSS was investigated and discussed thoroughly in this paper. Both the opaque and transparent MFSS yielded wideband bandstop and bandpass responses with low cross-polarisation (−37 dB), whereas the angular stability was limited to only 25°. The transparent MFSS displayed high-level transparency exceeding 70%. Both the simulated and measured performance comparison exhibited good correlation for both opaque and transparent MFSS. The proposed transparent MFSS with wideband frequency response and low cross-polarisation features signified a promising filtering potential in multiple applications.


Sign in / Sign up

Export Citation Format

Share Document