scholarly journals Output-Feedback Stabilization Control of Systems with Random Switchings and State Jumps

2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Wei Qian ◽  
Shen Cong ◽  
Zheng Zheng

The work is concerned with output-feedback stabilization control problem for a class of systems with random switchings and state jumps. The switching signal is supposed to obey Poisson distribution. Firstly, based on the asymptotical property of the distribution of switching points, we derive some sufficient conditions to guarantee the closed-loop system to be almost surely exponentially stable. Then, we pose a parametrization approach to convert the construction conditions of the output-feedback control into a family of matrix inequalities. Finally, a simulation example is given to demonstrate the effectiveness of our method.

2019 ◽  
Vol 37 (3) ◽  
pp. 752-764
Author(s):  
Liping Wang ◽  
Feng-Fei Jin

Abstract In this paper, we are concerned with boundary output feedback stabilization of a transport equation with non-local term. First, a boundary state feedback controller is designed by a backstepping approach. The closed-loop system is proved to be exponentially stable by the equivalence between original and target system. Then, we design an output feedback controller based on an infinite-dimensional observer. It is shown that the result closed-loop system is also exponentially stable. Finally, some numerical examples are presented to illustrate the effectiveness of the proposed feedback controller.


Author(s):  
H R Karimi ◽  
M Zapateiro ◽  
N Luo

A mixed H2/ H∞ output-feedback control design methodology for vibration reduction of base-isolated building structures modelled in the form of second-order linear systems is presented. Sufficient conditions for the design of a desired control are given in terms of linear matrix inequalities. A controller that guarantees asymptotic stability and a mixed H2/ H∞ performance for the closed-loop system of the structure is developed, based on a Lyapunov function. The performance of the controller is evaluated by means of simulations in MATLAB/Simulink.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Baojian Du ◽  
Fangzheng Gao ◽  
Fushun Yuan

This paper investigates the problem of global finite-time stabilization by output feedback for a class of nonholonomic systems in chained form with uncertainties. By using backstepping recursive technique and the homogeneous domination approach, a constructive design procedure for output feedback control is given. Together with a novel switching control strategy, the designed controller renders that the states of closed-loop system are regulated to zero in a finite time. A simulation example is provided to illustrate the effectiveness of the proposed approach.


Author(s):  
Junyong Zhai ◽  
Chunjian Qian ◽  
Hui Ye

This paper considers the problem of semiglobal stabilization by output feedback for a class of generalized multi-input and multi-output uncertain nonlinear systems. Due to the presence of mismatched uncertainties and the lack of triangularity condition, the systems under consideration are not uniformly completely observable. Combining the output feedback domination approach and block-backstepping scheme together, a series of linear output feedback controllers are constructed recursively for each subsystems and the closed-loop system is rendered semiglobally asymptotically stable.


2009 ◽  
Vol 14 (2) ◽  
pp. 145-153 ◽  
Author(s):  
A. Benabdallah

In this paper, we treat the problem of output feedback stabilization of nonlinear uncertain systems. We propose an output feedback controller that guarantees global uniform practical stability of the closed loop system.


2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
Cai-Yun Liu ◽  
Zong-Yao Sun ◽  
Qing-Hua Meng ◽  
Chih-Chiang Chen ◽  
Bin Cai ◽  
...  

This paper focuses on the problem of global output feedback stabilization for a class of nonlinear cascade systems with time-varying output function. By using double-domination approach, an output feedback controller is developed to guarantee the global asymptotic stability of closed-loop system. The novel control strategy successfully constructs a unified Lyapunov function, which is suitable for both upper-triangular and lower-triangular systems. Finally, two numerical examples are provided to illustrate the effectiveness of a control strategy.


2014 ◽  
Vol 536-537 ◽  
pp. 1170-1173
Author(s):  
Hong Yang ◽  
Huan Huan Lü ◽  
Le Zhang

The output feedback control problem is addressed for a class of switched fuzzy Systems. Using multiple Lyapunov function method and switching law, the relevant closed-loop system is asymptotically stable, with the switching law designed to implement the global asymptotic stability. The sufficient conditions to ensure the output feedback asymptotically stable output feedback control of closed-loop system are studied. The sufficient condition is transformed into Linear Matrix Inequality (LMI) problem which are more solvable. Finally, a numerical simulation example is employed to illustrate the effectiveness and the convergence of the design methodologies.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Ruicheng Li ◽  
Feng-Fei Jin ◽  
Baoqiang Yan

This paper considers the output feedback stabilization for a cascaded-wave PDE-ODE system with velocity recirculation by boundary control. First, we choose a well-known exponentially stable system as its target system and find a backstepping transformation to design a state feedback controller for the original system. Second, we attempt to give an output feedback controller for the original system by introducing the observer. The resulting closed-loop system admits a unique solution which is proved to be exponentially stable. Finally, we give some numerical examples to prove the validity for the theoretical results.


Author(s):  
Mounir Hammouche ◽  
Philippe Lutz ◽  
Micky Rakotondrabe

The problem of robust and optimal output feedback design for interval state-space systems is addressed in this paper. Indeed, an algorithm based on set inversion via interval analysis (SIVIA) combined with interval eigenvalues computation and eigenvalues clustering techniques is proposed to seek for a set of robust gains. This recursive SIVIA-based algorithm allows to approximate with subpaving the set solutions [K] that satisfy the inclusion of the eigenvalues of the closed-loop system in a desired region in the complex plane. Moreover, the LQ tracker design is employed to find from the set solutions [K] the optimal solution that minimizes the inputs/outputs energy and ensures the best behaviors of the closed-loop system. Finally, the effectiveness of the algorithm is illustrated by a real experimentation on a piezoelectric tube actuator.


Sign in / Sign up

Export Citation Format

Share Document