ode system
Recently Published Documents


TOTAL DOCUMENTS

157
(FIVE YEARS 61)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ikram Ullah ◽  
Rashid Ali ◽  
Hamid Nawab ◽  
Abdussatar ◽  
Iftikhar Uddin ◽  
...  

Abstract This study models the convective flow of Prandtl–Eyring nanomaterials driven by a stretched surface. The model incorporates the significant aspects of activation energy, Joule heating and chemical reaction. The thermal impulses of particles with melting condition is addressed. The system of equations is an ordinary differential equation (ODE) system and is tackled numerically by utilizing the Lobatto IIIA computational solver. The physical importance of flow controlling variables to the temperature, velocity and concentration is analyzed using graphical illustrations. The skin friction coefficient and Nusselt number are examined. The results of several scenarios, mesh-point utilization, the number of ODEs and boundary conditions evaluation are provided via tables.


2021 ◽  
Author(s):  
GUEYE cheikh ◽  
TOUMBOU Babacar ◽  
DIOUF Abdoulaye

Abstract The purpose of this work is to develop tools and techniques for modeling the capture of the Demographic Dividend. We presented the ordinary differential equation (ODE) system modeling the variation of economically dependent and economically non dependent populations. The system uses natality, natural mortality, infant mortality, migration (incoming and outgoing), and transfers. The mathematical study of this ODE system shows the existence of an equilibrium point whose stability depends on a certain number of system parameters. Numerical simulations of the resulting model were performed using scenarios approach.


Author(s):  
Bernhard Kähne ◽  
Markus Clemens ◽  
Sebastian Schöps

Purpose A transient magneto-quasistatic vector potential formulation involving nonlinear material is spatially discretized using the finite element method of first and second polynomial order. By applying a generalized Schur complement the resulting system of differential algebraic equations is reformulated into a system of ordinary differential equations (ODE). The ODE system is integrated in time by using explicit time integration schemes. The purpose of this paper is to investigate explicit time integration for eddy current problems with respect to the performance of the first-order explicit Euler scheme and the Runge-Kutta-Chebyshev (RKC) method of higher order. Design/methodology/approach The ODE system is integrated in time using the explicit Euler scheme, which is conditionally stable by a maximum time step size. To overcome this limit, an explicit multistage RKC time integration method of higher order is used to enlarge the maximum stable time step size. Both time integration methods are compared regarding the overall computational effort. Findings The numerical simulations show that a finer spatial discretization forces smaller time step sizes. In comparison to the explicit Euler time integration scheme, the multistage RKC method provides larger stable time step sizes to diminish the overall computation time. Originality/value The explicit time integration of the Schur complement vector potential formulation of eddy current problems is accelerated by a multistage RKC method.


2021 ◽  
Vol 8 (11) ◽  
Author(s):  
Sadegh Marzban ◽  
Renji Han ◽  
Nóra Juhász ◽  
Gergely Röst

We propose a hybrid partial differential equation–agent-based (PDE–ABM) model to describe the spatio-temporal viral dynamics in a cell population. The virus concentration is considered as a continuous variable and virus movement is modelled by diffusion, while changes in the states of cells (i.e. healthy, infected, dead) are represented by a stochastic ABM. The two subsystems are intertwined: the probability of an agent getting infected in the ABM depends on the local viral concentration, and the source term of viral production in the PDE is determined by the cells that are infected. We develop a computational tool that allows us to study the hybrid system and the generated spatial patterns in detail. We systematically compare the outputs with a classical ODE system of viral dynamics, and find that the ODE model is a good approximation only if the diffusion coefficient is large. We demonstrate that the model is able to predict SARS-CoV-2 infection dynamics, and replicate the output of in vitro experiments. Applying the model to influenza as well, we can gain insight into why the outcomes of these two infections are different.


Author(s):  
Marc WIJNAND ◽  
Brigitte d'Andréa-Novel ◽  
Lionel Rosier

The paper is concerned with the finite-time stabilization of a coupled PDE-ODE system describing the motion of an overhead crane with a flexible cable. The dynamics of the flexible cable is described by the wave equation with a variable coefficient which is an affine function of the curvilinear abscissa along the cable. Using several changes of variables, a backstepping transformation, and a finite-time stable second-order ODE for the dynamics of a conveniently chosen variable, we prove that a global finite-time stabilization occurs for the full system constituted of the platform and the cable. The kernel equations and the finite-time stable ODE are numerically solved in order to compute the nonlinear feedback law, and numerical simulations validating our finite-time stabilization approach are presented.


Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1626
Author(s):  
Renxuan Tang ◽  
Dongfang Li

In this paper, we use the scalar auxiliary variable (SAV) approach to rewrite the charged particle dynamics as a new family of ODE systems. The systems own a conserved energy. It is shown that a family of symmetrical methods is energy-conserving for a new ODE system but may not be for the original systems. Moreover, the methods have high-order accuracy. Numerical results are given to confirm the theoretical findings.


2021 ◽  
Vol 295 ◽  
pp. 39-69
Author(s):  
Ján Eliaš ◽  
Danielle Hilhorst ◽  
Masayasu Mimura ◽  
Yoshihisa Morita

Author(s):  
L.I. Rubina ◽  
O.N. Ul'yanov

An algorithm is proposed for obtaining solutions of partial differential equations with right-hand side defined on the grid $\{ x_{1}^{\mu}, x_{2}^{\mu}, \ldots, x_{n}^{\mu}\},\ (\mu=1,2,\ldots,N)\colon f_{\mu}=f(x_{1}^{\mu}, x_{2}^{\mu}, \ldots, x_{n}^{\mu}).$ Here $n$ is the number of independent variables in the original partial differential equation, $N$ is the number of rows in the grid for the right-hand side, $f=f( x_{1}, x_{2}, \ldots, x_{n})$ is the right-hand of the original equation. The algorithm implements a reduction of the original equation to a system of ordinary differential equations (ODE system) with initial conditions at each grid point and includes the following sequence of actions. We seek a solution to the original equation, depending on one independent variable. The original equation is associated with a certain system of relations containing arbitrary functions and including the partial differential equation of the first order. For an equation of the first order, an extended system of equations of characteristics is written. Adding to it the remaining relations containing arbitrary functions, and demanding that these relations be the first integrals of the extended system of equations of characteristics, we arrive at the desired ODE system, completing the reduction. The proposed algorithm allows at each grid point to find a solution of the original partial differential equation that satisfies the given initial and boundary conditions. The algorithm is used to obtain solutions of the Poisson equation and the equation of unsteady axisymmetric filtering at the points of the grid on which the right-hand sides of the corresponding equations are given.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shodhan Rao ◽  
Nathan Muyinda ◽  
Bernard De Baets

AbstractWe analyze the stability of a unique coexistence equilibrium point of a system of ordinary differential equations (ODE system) modelling the dynamics of a metapopulation, more specifically, a set of local populations inhabiting discrete habitat patches that are connected to one another through dispersal or migration. We assume that the inter-patch migrations are detailed balanced and that the patches are identical with intra-patch dynamics governed by a mean-field ODE system with a coexistence equilibrium. By making use of an appropriate Lyapunov function coupled with LaSalle’s invariance principle, we are able to show that the coexistence equilibrium point within each patch is locally asymptotically stable if the inter-patch dispersal network is heterogeneous, whereas it is neutrally stable in the case of a homogeneous network. These results provide a mathematical proof confirming the existing numerical simulations and broaden the range of networks for which they are valid.


Sign in / Sign up

Export Citation Format

Share Document