scholarly journals Prediction of Protein-Protein Interactions Related to Protein Complexes Based on Protein Interaction Networks

2015 ◽  
Vol 2015 ◽  
pp. 1-9
Author(s):  
Peng Liu ◽  
Lei Yang ◽  
Daming Shi ◽  
Xianglong Tang

A method for predicting protein-protein interactions based on detected protein complexes is proposed to repair deficient interactions derived from high-throughput biological experiments. Protein complexes are pruned and decomposed into small parts based on the adaptivek-cores method to predict protein-protein interactions associated with the complexes. The proposed method is adaptive to protein complexes with different structure, number, and size of nodes in a protein-protein interaction network. Based on different complex sets detected by various algorithms, we can obtain different prediction sets of protein-protein interactions. The reliability of the predicted interaction sets is proved by using estimations with statistical tests and direct confirmation of the biological data. In comparison with the approaches which predict the interactions based on the cliques, the overlap of the predictions is small. Similarly, the overlaps among the predicted sets of interactions derived from various complex sets are also small. Thus, every predicted set of interactions may complement and improve the quality of the original network data. Meanwhile, the predictions from the proposed method replenish protein-protein interactions associated with protein complexes using only the network topology.

2011 ◽  
Vol 135-136 ◽  
pp. 602-608
Author(s):  
Ya Meng ◽  
Xue Qun Shang ◽  
Miao Miao ◽  
Miao Wang

Mining functional modules with biological significance has attracted lots of attention recently. However, protein-protein interaction (PPI) network and other biological data generally bear uncertainties attributed to noise, incompleteness and inaccuracy in practice. In this paper, we focus on received PPI data with uncertainties to explore interesting protein complexes. Moreover, some novel conceptions extended from known graph conceptions are used to develop a depth-first algorithm to mine protein complexes in a simple uncertain graph. Our experiments take protein complexes from MIPS database as standard of accessing experimental results. Experiment results indicate that our algorithm has good performance in terms of coverage and precision. Experimental results are also assessed on Gene Ontology (GO) annotation, and the evaluation demonstrates proteins of our most acquired protein complexes show a high similarity. Finally, several experiments are taken to test the scalability of our algorithm. The result is also observed.


2017 ◽  
Vol 114 (40) ◽  
pp. E8333-E8342 ◽  
Author(s):  
Maximilian G. Plach ◽  
Florian Semmelmann ◽  
Florian Busch ◽  
Markus Busch ◽  
Leonhard Heizinger ◽  
...  

Cells contain a multitude of protein complexes whose subunits interact with high specificity. However, the number of different protein folds and interface geometries found in nature is limited. This raises the question of how protein–protein interaction specificity is achieved on the structural level and how the formation of nonphysiological complexes is avoided. Here, we describe structural elements called interface add-ons that fulfill this function and elucidate their role for the diversification of protein–protein interactions during evolution. We identified interface add-ons in 10% of a representative set of bacterial, heteromeric protein complexes. The importance of interface add-ons for protein–protein interaction specificity is demonstrated by an exemplary experimental characterization of over 30 cognate and hybrid glutamine amidotransferase complexes in combination with comprehensive genetic profiling and protein design. Moreover, growth experiments showed that the lack of interface add-ons can lead to physiologically harmful cross-talk between essential biosynthetic pathways. In sum, our complementary in silico, in vitro, and in vivo analysis argues that interface add-ons are a practical and widespread evolutionary strategy to prevent the formation of nonphysiological complexes by specializing protein–protein interactions.


2004 ◽  
Vol 5 (2) ◽  
pp. 173-178 ◽  
Author(s):  
Javier De Las Rivas ◽  
Alberto de Luis

In recent years, the biomolecular sciences have been driven forward by overwhelming advances in new biotechnological high-throughput experimental methods and bioinformatic genome-wide computational methods. Such breakthroughs are producing huge amounts of new data that need to be carefully analysed to obtain correct and useful scientific knowledge. One of the fields where this advance has become more intense is the study of the network of ‘protein–protein interactions’, i.e. the ‘interactome’. In this short review we comment on the main data and databases produced in this field in last 5 years. We also present a rationalized scheme of biological definitions that will be useful for a better understanding and interpretation of ‘what a protein–protein interaction is’ and ‘which types of protein–protein interactions are found in a living cell’. Finally, we comment on some assignments of interactome data to defined types of protein interaction and we present a new bioinformatic tool called APIN (Agile Protein Interaction Network browser), which is in development and will be applied to browsing protein interaction databases.


2012 ◽  
Vol 22 (1) ◽  
pp. 7-14
Author(s):  
Bui Phuong Thuy ◽  
Trinh Xuan Hoang

Protein interacts with one another resulting in complex functions in living organisms. Like many other real-world networks, the networks of protein-protein interactions possess a certain degree of ordering, such as the scale-free property. The latter means that the probability $P$ to find a protein that interacts with $k$ other proteins follows a power law, $P(k) \sim k^{-\gamma}$. Protein interaction networks (PINs) have been studied by using a stochastic model, the duplication-divergence model, which is based on mechanisms of gene duplication and divergence during evolution. In this work, we show that this model can be used to fit experimental data on the PIN of yeast Saccharomyces cerevisae at two different time instances simultaneously. Our study shows that the evolution of PIN given by model is consistent with growing experimental data over time, and that the scale-free property of protein interaction network is robust against random deletion of interactions.


Author(s):  
Yu-Miao Zhang ◽  
Jun Wang ◽  
Tao Wu

In this study, the Agrobacterium infection medium, infection duration, detergent, and cell density were optimized. The sorghum-based infection medium (SbIM), 10-20 min infection time, addition of 0.01% Silwet L-77, and Agrobacterium optical density at 600 nm (OD600), improved the competence of onion epidermal cells to support Agrobacterium infection at >90% efficiency. Cyclin-dependent kinase D-2 (CDKD-2) and cytochrome c-type biogenesis protein (CYCH), protein-protein interactions were localized. The optimized procedure is a quick and efficient system for examining protein subcellular localization and protein-protein interaction.


2020 ◽  
Vol 27 (37) ◽  
pp. 6306-6355 ◽  
Author(s):  
Marian Vincenzi ◽  
Flavia Anna Mercurio ◽  
Marilisa Leone

Background:: Many pathways regarding healthy cells and/or linked to diseases onset and progression depend on large assemblies including multi-protein complexes. Protein-protein interactions may occur through a vast array of modules known as protein interaction domains (PIDs). Objective:: This review concerns with PIDs recognizing post-translationally modified peptide sequences and intends to provide the scientific community with state of art knowledge on their 3D structures, binding topologies and potential applications in the drug discovery field. Method:: Several databases, such as the Pfam (Protein family), the SMART (Simple Modular Architecture Research Tool) and the PDB (Protein Data Bank), were searched to look for different domain families and gain structural information on protein complexes in which particular PIDs are involved. Recent literature on PIDs and related drug discovery campaigns was retrieved through Pubmed and analyzed. Results and Conclusion:: PIDs are rather versatile as concerning their binding preferences. Many of them recognize specifically only determined amino acid stretches with post-translational modifications, a few others are able to interact with several post-translationally modified sequences or with unmodified ones. Many PIDs can be linked to different diseases including cancer. The tremendous amount of available structural data led to the structure-based design of several molecules targeting protein-protein interactions mediated by PIDs, including peptides, peptidomimetics and small compounds. More studies are needed to fully role out, among different families, PIDs that can be considered reliable therapeutic targets, however, attacking PIDs rather than catalytic domains of a particular protein may represent a route to obtain selective inhibitors.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Sun Sook Chung ◽  
Joseph C F Ng ◽  
Anna Laddach ◽  
N Shaun B Thomas ◽  
Franca Fraternali

Abstract Direct drug targeting of mutated proteins in cancer is not always possible and efficacy can be nullified by compensating protein–protein interactions (PPIs). Here, we establish an in silico pipeline to identify specific PPI sub-networks containing mutated proteins as potential targets, which we apply to mutation data of four different leukaemias. Our method is based on extracting cyclic interactions of a small number of proteins topologically and functionally linked in the Protein–Protein Interaction Network (PPIN), which we call short loop network motifs (SLM). We uncover a new property of PPINs named ‘short loop commonality’ to measure indirect PPIs occurring via common SLM interactions. This detects ‘modules’ of PPI networks enriched with annotated biological functions of proteins containing mutation hotspots, exemplified by FLT3 and other receptor tyrosine kinase proteins. We further identify functional dependency or mutual exclusivity of short loop commonality pairs in large-scale cellular CRISPR–Cas9 knockout screening data. Our pipeline provides a new strategy for identifying new therapeutic targets for drug discovery.


Author(s):  
Rohan Dandage ◽  
Caroline M Berger ◽  
Isabelle Gagnon-Arsenault ◽  
Kyung-Mee Moon ◽  
Richard Greg Stacey ◽  
...  

Abstract Hybrids between species often show extreme phenotypes, including some that take place at the molecular level. In this study, we investigated the phenotypes of an interspecies diploid hybrid in terms of protein-protein interactions inferred from protein correlation profiling. We used two yeast species, Saccharomyces cerevisiae and Saccharomyces uvarum, which are interfertile, but yet have proteins diverged enough to be differentiated using mass spectrometry. Most of the protein-protein interactions are similar between hybrid and parents, and are consistent with the assembly of chimeric complexes, which we validated using an orthogonal approach for the prefoldin complex. We also identified instances of altered protein-protein interactions in the hybrid, for instance in complexes related to proteostasis and in mitochondrial protein complexes. Overall, this study uncovers the likely frequent occurrence of chimeric protein complexes with few exceptions, which may result from incompatibilities or imbalances between the parental proteins.


2016 ◽  
Vol 2016 ◽  
pp. 1-13
Author(s):  
Stefan Kalkhof ◽  
Stefan Schildbach ◽  
Conny Blumert ◽  
Friedemann Horn ◽  
Martin von Bergen ◽  
...  

The functionality of most proteins is regulated by protein-protein interactions. Hence, the comprehensive characterization of the interactome is the next milestone on the path to understand the biochemistry of the cell. A powerful method to detect protein-protein interactions is a combination of coimmunoprecipitation or affinity purification with quantitative mass spectrometry. Nevertheless, both methods tend to precipitate a high number of background proteins due to nonspecific interactions. To address this challenge the software Protein-Protein-Interaction-Optimizer (PIPINO) was developed to perform an automated data analysis, to facilitate the selection of bona fide binding partners, and to compare the dynamic of interaction networks. In this study we investigated the STAT1 interaction network and its activation dependent dynamics. Stable isotope labeling by amino acids in cell culture (SILAC) was applied to analyze the STAT1 interactome after streptavidin pull-down of biotagged STAT1 from human embryonic kidney 293T cells with and without activation. Starting from more than 2,000 captured proteins 30 potential STAT1 interaction partners were extracted. Interestingly, more than 50% of these were already reported or predicted to bind STAT1. Furthermore, 16 proteins were found to affect the binding behavior depending on STAT1 phosphorylation such as STAT3 or the importin subunits alpha 1 and alpha 6.


2021 ◽  
Author(s):  
Laia Miret Casals ◽  
Willem Vannecke ◽  
Kurt Hoogewijs ◽  
Gianluca Arauz ◽  
Marina Gay ◽  
...  

We describe furan as a triggerable ‘warhead’ for site-specific cross-linking using the actin and thymosin β4 (Tβ4)-complex as model of a weak and dynamic protein-protein interaction with known 3D structure...


Sign in / Sign up

Export Citation Format

Share Document