scholarly journals Stability and Convergence of Solutions to Volterra Integral Equations on Time Scales

2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Eleonora Messina ◽  
Antonia Vecchio

We consider Volterra integral equations on time scales and present our study about the long time behavior of their solutions. We provide sufficient conditions for the stability and investigate the convergence properties when the kernel of the equations vanishes at infinity.

2010 ◽  
Vol 82 (1) ◽  
pp. 139-155 ◽  
Author(s):  
MURAT ADıVAR ◽  
YOUSSEF N. RAFFOUL

AbstractWe introduce the concept of ‘shift operators’ in order to establish sufficient conditions for the existence of the resolvent for the Volterra integral equation on time scales. The paper will serve as the foundation for future research on the qualitative analysis of solutions of Volterra integral equations on time scales, using the notion of the resolvent.


Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1133
Author(s):  
Eleonora Messina ◽  
Youssef N. Raffoul ◽  
Antonia Vecchio

This paper describes the effect of perturbation of the kernel on the solutions of linear Volterra integral equations on time scales and proposes a new perspective for the stability analysis of numerical methods.


2009 ◽  
Vol 131 (3) ◽  
Author(s):  
Mario Durán ◽  
Jean-Claude Nédélec ◽  
Sebastián Ossandón

An efficient numerical method, using integral equations, is developed to calculate precisely the acoustic eigenfrequencies and their associated eigenvectors, located in a given high frequency interval. It is currently known that the real symmetric matrices are well adapted to numerical treatment. However, we show that this is not the case when using integral representations to determine with high accuracy the spectrum of elliptic, and other related operators. Functions are evaluated only in the boundary of the domain, so very fine discretizations may be chosen to obtain high eigenfrequencies. We discuss the stability and convergence of the proposed method. Finally we show some examples.


2018 ◽  
Vol 6 (3) ◽  
pp. 252-262 ◽  
Author(s):  
Kaloyan Yankov

The phase portrait of the second and higher order differential equations presents in graphical form the behavior of the solution set without solving the equation. In this way, the stability of a dynamic system and its long-time behavior can be studied. The article explores the capabilities of Mathcad for analysis of systems by the phase plane method. A sequence of actions using Mathcad's operators to build phase portrait and phase trace analysis is proposed. The approach is illustrated by a model of plasma renin activity after treatment of experimental animals with nicardipine. The identified process is a differential equation of the second order. The algorithm is also applicable to systems of higher order.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Kejun Zhuang ◽  
Gao Jia ◽  
Dezhi Liu

Due to the different roles that nontoxic phytoplankton and toxin-producing phytoplankton play in the whole aquatic system, a delayed reaction-diffusion planktonic model under homogeneous Neumann boundary condition is investigated theoretically and numerically. This model describes the interactions between the zooplankton and two kinds of phytoplanktons. The long-time behavior of the model and existence of positive constant equilibrium solution are first discussed. Then, the stability of constant equilibrium solution and occurrence of Hopf bifurcation are detailed and analyzed by using the bifurcation theory. Moreover, the formulas for determining the bifurcation direction and stability of spatially bifurcating solutions are derived. Finally, some numerical simulations are performed to verify the appearance of the spatially homogeneous and nonhomogeneous periodic solutions.


2010 ◽  
Vol 23 (10) ◽  
pp. 1162-1165 ◽  
Author(s):  
Eleonora Messina ◽  
Yoshiaki Muroya ◽  
Elvira Russo ◽  
Antonia Vecchio

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Anatoly S. Apartsyn

The sufficient conditions are obtained for the existence and uniqueness of continuous solution to the linear nonclassical Volterra equation that appears in the integral models of developing systems. The Volterra integral equations of the first kind with piecewise smooth kernels are considered. Illustrative examples are presented.


Author(s):  
Annalisa Cesaroni ◽  
Heiko Kröner ◽  
Matteo Novaga

We consider the anisotropic mean curvature flow of entire Lipschitz graphs. We prove existence and uniqueness of expanding self-similar solutions which are asymptotic to a prescribed cone, and we characterize the long time behavior of solutions, after suitable rescaling, when the initial datum is a sublinear perturbation of a cone. In the case of regular anisotropies, we prove the stability of self-similar solutions asymptotic to strictly mean convex cones, with respect to perturbations vanishing at infinity. We also show the stability of hyperplanes, with a proof which is novel also for the isotropic mean curvature flow.


Sign in / Sign up

Export Citation Format

Share Document