scholarly journals Plasma Induced Physicochemical Changes and Reactive Dyeing of Wool Fabrics

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
J. Udakhe ◽  
S. Honade ◽  
N. Shrivastava

This study focuses on the effect of dielectric barrier discharge (DBD) plasma treatment on physical and chemical properties of wool fabric and its relation to exhaustion of Drimalan Navy Blue FBI reactive dye. AFM analysis of plasma treated wool fabric has shown partial removal of epicuticle and thus reduced scale height. FD spectroscopy has shown improvement in hydrophilicity by many folds after plasma treatment. ATR graphs depict the removal of hydrophobic layer of 18-MEA and introduction of hydrophilic groups like cysteic acid after plasma treatment. Alkali solubility of wool fabric increases with increasing plasma treatment time. Wetting time for plasma treated fabric reduces drastically when compared to untreated wool fabric. It is found that plasma treated fabric takes much lesser time to reach maximum dye exhaustion than untreated fabric. Substantivity of the dye increases significantly after plasma treatment. Colour fastness properties improve with increase in plasma treatment time. Chemical oxygen demand (COD) of spent dyebath liquor is found to reduce with increase in plasma treatment time. Biological oxygen demand (BOD) is found to be higher for plasma treated samples, while ratio of COD/BOD has reduced with increase in the plasma treatment time.

Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 3011
Author(s):  
Ha-Thanh Ngo ◽  
Khanh Vu Thi Hong ◽  
The-Bach Nguyen

In the first part of the study, dyed polyester fabric was treated with a dielectric barrier discharge (DBD) plasma at 1 W/cm2 for 15, 30, 60 and 90 s. The wicking height, tensile strength and color of the control and plasma treated fabrics were measured. Results show that the fabric capillary increases with plasma treatment time up to 90 s. However, plasma treatment time longer than 60 s caused an obvious color change and decrease in tensile strength of fabric. Plasma contact time should be such that plasma can improve the hydrophilicity of the fabric and adversely affect the properties of the fabric as little as possible. Thus, the suitable plasma contact time should be less than 60 s. Based on these results, in the second part of the study, three different time levels (15, 20 and 30 s) were selected for plasma pretreatment of this fabric. The plasma-treated fabric was then padded with the flame retardant (FR) (CETAFLAM PDP 30), dried and finally cured at 190 °C for 120 s. The limited oxygen index (LOI) of FR fabrics and the vertical fire characteristics of FR fabric after being washed 5 times also were measured. Comparison of these results with those of FR fabrics without plasma pretreatment shows that plasma pretreatment improves the fabric’s flame retardancy and FR durability. Moreover, it also reduces the heat shrinkage of PET fabric due to high temperature curing. The scanning electron microscopy (SEM) images of the fabric after plasma treatment and FR treatment and the energy-dispersive spectroscopy (EDS) spectrum of the fabric are consistent with the above results.


1997 ◽  
Vol 67 (1) ◽  
pp. 69-74 ◽  
Author(s):  
I. M. Zuchairah ◽  
M. T. Pailthorpe ◽  
S. K. David

The application of glow discharge plasma to the surface of wool fabric is known to increase fiber hydrophilicity and confer a partial shrink resist effect during washing. In this work, four different polymer systems, Basolan SW, Basolan MW, Polymer G, and Polymer PL, are applied onto plasma treated wool fabric to enhance the degree of shrink resistance. The level of shrink resistance varies significantly with plasma-polymer treatments, depending on the kind of polymer system applied, with Polymers PL and G conferring excellent shrink resistance even for very short plasma pretreatment times of 2 minutes. The extent of weight loss during washing is also minimized for all plasma-polymer applications relative to polymer-only or chlorinated-polymer treated wool. Fabric tear strength and handle are adversely affected by plasma treatment, but these properties are favorably restored on polymer application. Wrinkle recovery decreases with plasma treatment time, and this property is not improved with polymer application.


Plasma ◽  
2017 ◽  
Vol 1 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Joshua Smith ◽  
Isaac Adams ◽  
Hai-Feng Ji

This research focused on determining the effectiveness of non-thermal atmospheric pressure plasma as an alternative to advanced oxidation processes (AOP) for antibiotic removal in solution. For this study, 20 mM (6.988 g/L) solutions of ampicillin were treated with a floating electrode dielectric barrier discharge (FE-DBD) plasma for varying treatment times. The treated solutions were analyzed primarily using mass spectrometry (MS) and nuclear magnetic resonance spectroscopy (NMR). The preliminary product formed was Ampicillin Sulfoxide, however, many more species are formed as plasma treatment time is increased. Ampicillin was completely eliminated after five minutes of air-plasma treatment. The primary mechanism of ampicillin degradation by plasma treatment is investigated in this study.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1434
Author(s):  
Thu Nguyen Thi Kim ◽  
Khanh Vu Thi Hong ◽  
Nguyen Vu Thi ◽  
Hai Vu Manh

This study consists of two parts. In the first, the woven polyester fabric, after washing to remove lubricant oils, was treated with the dielectric barrier discharge (DBD) plasma at the short plasma exposure time (from 15 to 90 s). The effect of the plasma exposure time on the activation of the polyester fabric was assessed by the wicking height of the samples. The results show that the wicking height in the warp direction of the plasma-treated samples improved but was virtually unchanged in the weft direction. Meanwhile, although the tensile strength in the warp direction of the fabric was virtually unaffected despite the plasma treatment time up to 90 s, in the weft direction it increased slightly with the plasma treatment time. Scanning Electron Microscope (SEM) images and the X-ray Photoelectron Spectroscopy (XPS) spectra of the samples before and after the plasma treatment were used to explain the nature of these phenomena. Based on the results of the first part, in the second part, two levels of the plasma treatment time (30 and 60 s) were selected to study their effect on the polyester fabric dyeability with disperse dyes. The color strength (K/S) values of the dyed samples were used to evaluate the dyeability of the fabric. The SEM images of the dyed samples also showed the difference in the dyeability between the plasma-treated and untreated samples. A new feature of this study is the DBD plasma treatment condition for polyester fabrics. The first is the use of DBD plasma in air (no addition of gas). Second is the very short plasma treatment time (only 15 to 90 s); this condition will be very favorable for the deployment on an industrial scale.


2009 ◽  
Vol 23 (06n07) ◽  
pp. 1300-1305
Author(s):  
KI-HO SONG ◽  
HYUN-YONG LEE ◽  
HOE-YOUNG YANG ◽  
SUNG-WON KIM ◽  
JAE-HEE SEO ◽  
...  

Two-dimensional photonic crystals (2D-PCs) with Ge 2 Sb 2 Te 5 ( GST ) nanohole arrays were prepared by the nanosphere lithography (NSL) process. A primary factor of PCs is that the refractive index (n) and the n-modulation can be realized by using the GST films, which exhibit a reversible phase transformation between amorphous and crystalline states by laser illumination. The polystyrene (PS) spheres with a diameter of 500 nm were spin-coated on Si substrate and subsequently reduced by O 2-plasma treatment. The reduced spheres were utilized as a lift-off mask of the NSL process and their size and separation could be precisely controlled. Amorphous GST films were thermally evaporated and then the reduced PS spheres were removed. The fabricated GST nanohole arrays were observed by SEM and AFM. The nanohole diameters are nearly linearly reduced with increasing plasma-treatment time (t). The reduction rate (δ) for the conditions of this work was evaluated to be ~ 0.92 nm/s. The period (Λ) and filling factor (η) of PCs are structure parameters that determine their photonic bandgaps (PBGs). η-modulation can be easily achieved via a control of t and the Λ can be also modulated by the use of PS spheres with specific diameter. In addition, the PBGs for the fabricated GST 2 D PC were calculated by considering the amorphous and crystalline states of GST .


2012 ◽  
Vol 499 ◽  
pp. 90-94 ◽  
Author(s):  
Jin Yun Xu ◽  
Wen Yu Wang ◽  
Xin Jin

To improve the adhesion between ultra-high-molecular-weight polyethylene (UHMWPE) fibers and matrix, the UHMWPE fibers were treated by low temperature argon-plasma. The effects of argon-plasma treatment on the properties of UHMWPE have been investigated. The roughness and wetting ability were all found to increase significantly after modifications. The tensile strength of UHMWE fibers were decreased with the plasma treatment time. The optimum plasma treatment is 2min.The increasing of roughness and wetting ability of UHMWPE fiber are beneficial to the improvement the adhesion between UHMWPE fiber and matrix.


Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 580
Author(s):  
Chao-Ching Chiang ◽  
Philip Nathaniel Immanuel ◽  
Yi-Hsiung Chiu ◽  
Song-Jeng Huang

In this work we report on a rapid, easy-to-operate, lossless, room temperature heterogeneous H2O plasma treatment process for the bonding of poly(methyl methacrylate) (PMMA) and double-sided polished (DSP) silicon substrates by for utilization in sandwich structured microfluidic devices. The heterogeneous bonding of the sandwich structure produced by the H2O plasma is analyzed, and the effect of heterogeneous bonding of free radicals and high charge electrons (e−) in the formed plasma which causes a passivation phenomenon during the bonding process investigated. The PMMA and silicon surface treatments were performed at a constant radio frequency (RF) power and H2O flow rate. Changing plasma treatment time and powers for both processes were investigated during the experiments. The gas flow rate was controlled to cause ionization of plasma and the dissociation of water vapor from hydrogen (H) atoms and hydroxyl (OH) bonds, as confirmed by optical emission spectroscopy (OES). The OES results show the relative intensity peaks emitted by the OH radicals, H and oxygen (O). The free energy is proportional to the plasma treatment power and gas flow rate with H bonds forming between the adsorbed H2O and OH groups. The gas density generated saturated bonds at the interface, and the discharge energy that strengthened the OH-e− bonds. This method provides an ideal heterogeneous bonding technique which can be used to manufacture new types of microfluidic devices.


Metals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 991 ◽  
Author(s):  
Masoud Shekargoftar ◽  
Jana Jurmanová ◽  
Tomáš Homola

Organic-inorganic halide perovskite materials are considered excellent active layers in the fabrication of highly efficient and low-cost photovoltaic devices. This contribution demonstrates that rapid and low-temperature air-plasma treatment of mixed organic-inorganic halide perovskite film is a promising technique, controlling its opto-electrical surface properties by changing the ratio of organic-to-inorganic components. Plasma treatment of perovskite films was performed with high power-density (25 kW/m2 and 100 W/cm3) diffuse coplanar surface barrier discharge (DCSBD) at 70 °C in ambient air. The results show that short plasma treatment time (1 s, 2 s, and 5 s) led to a relatively enlargement of grain size, however, longer plasma treatment time (10 s and 20 s) led to an etching of the surface. The band-gap energy of the perovskite films was related to the duration of plasma treatment; short periods (≤5 s) led to a widening of the band gap from ~1.66 to 1.73 eV, while longer exposure (>5 s) led to a narrowing of the band gap to approx. 1.63 eV and fast degradation of the film due to etching. Surface analysis demonstrated that the film became homogeneous, with highly oriented crystals, after short plasma treatment; however, prolonging the plasma treatment led to morphological disorders and partial etching of the surface. The plasma treatment approach presented herein addresses important challenges in current perovskite solar cells: tuning the optoelectronic properties and manufacturing homogeneous perovskite films.


2006 ◽  
Vol 13 (02n03) ◽  
pp. 265-271
Author(s):  
CHI-AN DAI ◽  
TAI-AN TSUI ◽  
YAO-YI CHENG

The interface between biaxially oriented poly (ethylene terephthalate) (PET) films and poly (styrene-co-maleic anhydride) (PSMA) was reinforced by nitrogen plasma treatment of PET film and subsequent annealing treatment of the PET/PSMA bi-material. The fracture toughness, Gc, of the interface was quantitatively measured using an asymmetric double cantilever beam test (ADCB). X-ray photoelectron spectrometry (XPS) was used to measure the change in the surface composition of PET films upon plasma treatment and correlate the fracture toughness of the interface. The fracture energy of PET/PSMA interface is significantly enhanced by annealing the plasma treated PET with PSMA at a temperature greater than the glass transition temperature of PSMA (~ 120°C). At an annealing temperature of 150°C, Gc increases with increasing plasma treatment time and reaches a plateau value of ~ 100–120 J/m2, a two order of magnitude increase in Gc compared with that of samples annealed at 130°C. The enhancement of the adhesion is resulted from the in-situ formation of copolymers due to reaction between amine functional groups from the plasma treatment and anhydride groups from PSMA. For plasma treatment time < 10 s, scanning electron microscope (SEM) measurement show that the fracture surface is relatively smooth indicating an interfacial failure between PET/PSMA. With increasing plasma treatment time and therefore increasing the amount of nitrogen functional groups on PET surface, large plastic deformation takes place at the PET/PSMA interface. For treatment time ≥ 100–150 s, the PET/PSMA interface becomes stronger than PET bulk material and consequently crack deviates from the interface and the failure occurs within the PET film. The interlayer fracture energy of a biaxially oriented PET film can thus be quantitatively measured with a Gc value of roughly 120 J/m2.


Sign in / Sign up

Export Citation Format

Share Document