scholarly journals Effect of Friction Model and Tire Maneuvering on Tire-Pavement Contact Stress

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Haichao Zhou ◽  
Guolin Wang ◽  
Yangmin Ding ◽  
Jian Yang ◽  
Chen Liang ◽  
...  

This paper aims to simulate the effects of different friction models on tire braking. A truck radial tire (295/80R22.5) was modeled and the model was validated with tire deflection. An exponential decay friction model that considers the effect of sliding velocity on friction coefficients was adopted for analyzing braking performance. The result shows that the exponential decay friction model used for evaluating braking ability meets design requirements of antilock braking system (ABS). The tire-pavement contact stress characteristics at various driving conditions (static, free rolling, braking, camber, and cornering) were analyzed. It is found that the change of driving conditions has direct influence on tire-pavement contact stress distribution. The results provide the guidance for tire braking performance evaluation.

2015 ◽  
Vol 43 (3) ◽  
pp. 182-194 ◽  
Author(s):  
Jeffery R. Anderson ◽  
John Adcox ◽  
Beshah Ayalew ◽  
Mike Knauff ◽  
Tim Rhyne ◽  
...  

ABSTRACT This paper presents simulation and experimental results that outline the interaction between a tire's torsional dynamic properties and antilock braking system (ABS) during a hard braking event. Previous work has shown the importance of the coupled dynamics of the tire's belt, sidewall, and wheel/hub assembly on braking performance for a wheel acceleration-based ABS controller. This work presents findings based on a proprietary slip-based ABS controller. A comprehensive system model including tire torsional dynamics, dynamics of the tread–ground friction (LuGre friction model), and dominant brake system hydraulic dynamics was developed for simulation studies on this slip-based controller. Results from key sensitivity studies of tire torsional parameters are presented along with experimental results obtained on a quarter car braking test rig. In this work, it was found that within a reasonable tire design space (with respect to tire torsional properties), the ABS algorithm tested was extremely robust to changing these parameters. The main conclusion of this result is that when a consumer replaces his or her tires with different (than original equipment) tires, there should be little effect on braking performance.


2013 ◽  
Vol 393 ◽  
pp. 637-643 ◽  
Author(s):  
M.H.M. Ariff ◽  
Hairi Zamzuri ◽  
N.R.N. Idris ◽  
Saiful Amri Mazlan

The introduction of anti-lock braking system (ABS) has been regarded as one of the solutions for braking performance issues due to its notable advantages. The subject had been extensively being studied by researchers until today, to improve the performance of the todays vehicles particularly on the brake system. In this paper, a basic modeling of an ABS braking system via slip control has been introduced on a quarter car model with a conventional hydraulic braking mode. Results of three fundamental controller designs used to evaluate the braking performance of the modeled ABS systems are also been presented. This revisited modeling guide, could be a starting point for new researchers to comprehend the basic braking system behavior before going into more complex braking systems studies.


2014 ◽  
Vol 6 ◽  
pp. 617584 ◽  
Author(s):  
Yaojung Shiao ◽  
Quang-Anh Nguyen ◽  
Jhe-Wei Lin

A novel hybrid antilock braking system (ABS) with the combination of auxiliary brake and a multipole magnetorheological (MR) brake was proposed in this paper. The MR brake with innovative operation concept can replace existed hydraulic brake system or works as an auxiliary brake. Two simulation models of the MR brakes, inner rotor and outer rotor structures, have been built. The outer rotor design was chosen due to its better braking performance and suitable mechanism for using on motorcycle. After that, motorcycle simulation software was employed to validate the hybrid ABS system under appropriated working condition. Two controllers, the ordinary and self-organizing fuzzy logic controllers (FLC and SOFLC), were evaluated on ABS performance to pick the suitable one. Simulation results confirm the more adaptations to different road conditions of the SOFLC with 18% higher brake performance compared to ones of ordinary FLC. Brake performance can increase 12% more with the combination of SOFLC and road condition estimator (RCE). It is concluded that this hybrid ABS is feasible for actual application by effectively improving the brake performance for ensuring driving stability.


2015 ◽  
Vol 137 (6) ◽  
Author(s):  
Cheng-Ping Yang ◽  
Ming-Shien Yang ◽  
Tyng Liu

A new concept for a mechanical antilock braking system (ABS) with a centrifugal braking device (CBD), termed a centrifugal ABS (C-ABS), is presented and developed in this paper. This new CBD functions as a brake in which the output braking torque adjusts itself depending on the speed of the output rotation. First, the structure and mechanical models of the entire braking system are introduced and established. Second, a numerical computer program for simulating the operation of the system is developed. The characteristics of the system can be easily identified and can be designed with better performance by using this program to studying the effects of different design parameters. Finally, the difference in the braking performance between the C-ABS and the braking system with or without a traditional ABS is discussed. The simulation results indicate that the C-ABS can prevent the wheel from locking even if excessive operating force is provided while still maintaining acceptable braking performance.


2013 ◽  
Vol 479-480 ◽  
pp. 622-626 ◽  
Author(s):  
Yao Jung Shiao ◽  
Quang Anh Nguyen ◽  
Jhe Wei Lin

This paper proposes a novel hybrid antilock braking system (ABS) with the combination of auxiliary brake and a magnetorheological (MR) brake with multiple poles. The operation concept of this MR brake is different to conventional MR brake. Its output torque proves the ability to be used in motorcycle brake system. In concept, a fast-response MR brake replaces existed hydraulic brake system, or works as an auxiliary brake, the brake performance can be effectively improved and driving stability can be guaranteed. Simulation model of the MR brake has been built and its braking performance for using on a motorcycle was verified. After that, a motorcycle simulation software was employed to validate the hybrid ABS system under appropriated working condition. The results confirm its feasibility for actual application as a hybrid ABS system.


2021 ◽  
Vol 11 (1) ◽  
pp. 617-623
Author(s):  
Adam Sowiński ◽  
Tomasz Szczepański ◽  
Grzegorz Koralewski

Abstract This article presents the results of measurements of the braking efficiency of vehicles adapted to be operated by drivers with motor dysfunctions. In such cars, the braking system is extended with an adaptive device that allows braking with the upper limb. This device applies pressure to the original brake in the car. The braking force and thus its efficiency depend on the mechanical ratio in the adapting device. In addition, braking performance depends on the sensitivity of the car’s original braking system and the maximum force that a disabled person can exert on the handbrake lever. Such a person may have limited power in the upper limbs. The force exerted by the driver can also be influenced by the position of the driver’s seat in relation to the handbrake lever. This article describes the research aimed at understanding the influence of the above-mentioned factors on the car braking performance. As a part of the analysis of the test results, a mathematical function was proposed that allows a parametric description of the braking efficiency index on the basis of data on the braking system, adaptation device, driver’s motor limitations, and the position of the driver’s seat. The information presented in this article can be used for the preliminary selection of adaptive devices to the needs of a given driver with a disability and to the vehicle construction.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1294
Author(s):  
Xiangdang XUE ◽  
Ka Wai Eric CHENG ◽  
Wing Wa CHAN ◽  
Yat Chi FONG ◽  
Kin Lung Jerry KAN ◽  
...  

An antilock braking system (ABS) is one of the most important components in a road vehicle, which provides active protection during braking, to prevent the wheels from locking-up and achieve handling stability and steerability. The all-electric ABS without any hydraulic components is a potential candidate for electric vehicles. To demonstrate and examine the all-electric ABS algorithms, this article proposes a single-wheel all-electric ABS test bench, which mainly includes the vehicle wheel, the roller, the flywheels, and the electromechanical brake. To simulate dynamic operation of a real vehicle’s wheel, the kinetic energy of the total rotary components in the bench is designed to match the quarter of the one of a commercial car. The vertical force to the wheel is adjustable. The tire-roller contact simulates the real tire-road contact. The roller’s circumferential velocity represents the longitudinal vehicle velocity. The design and analysis of the proposed bench are described in detail. For the developed prototype, the rated clamping force of the electromechanical brake is 11 kN, the maximum vertical force to the wheel reaches 300 kg, and the maximum roller (vehicle) velocity reaches 100 km/h. The measurable bandwidth of the wheel speed is 4 Hz–2 kHz and the motor speed is 2.5 Hz–50 kHz. The measured results including the roller (vehicle) velocity, the wheel velocity, and the wheel slip are satisfactory. This article offers the effective tools to verify all-electric ABS algorithms in a laboratory, hence saving time and cost for the subsequent test on a real road.


2011 ◽  
Vol 211-212 ◽  
pp. 535-539
Author(s):  
Ai Hua Liao

The impeller mounted onto the compressor shaft assembly via interference fit is one of the key components of a centrifugal compressor stage. A suitable fit tolerance needs to be considered in the structural design. A locomotive-type turbocharger compressor with 24 blades under combined centrifugal and interference-fit loading was considered in the numerical analysis. The FE parametric quadratic programming (PQP) method which was developed based on the parametric variational principle (PVP) was used for the analysis of stress distribution of 3D elastoplastic frictional contact of impeller-shaft sleeve-shaft. The solution of elastoplastic frictional contact problems belongs to the unspecified boundary problems where the interaction between two kinds of nonlinearities should occur. The effect of fit tolerance, rotational speed and the contact stress distribution on the contact stress was discussed in detail in the numerical computation. The study play a referenced role in deciding the proper fit tolerance and improving design and manufacturing technology of compressor impellers.


1971 ◽  
Vol 38 (3) ◽  
pp. 608-614 ◽  
Author(s):  
Y. C. Pao ◽  
Ting-Shu Wu ◽  
Y. P. Chiu

This paper is concerned with the plane-strain problem of an elastic layer supported on a half-space foundation and indented by a cylinder. A study is presented of the effect of the contact condition at the layer-foundation interface on the contact stresses of the indented layer. For the general problem of elastic indenter or elastic foundation, the integral equations governing the contact stress distribution of the indented layer derived on the basis of two-dimensional theory of elasticity are given and a numerical method of solution is formulated. The limiting contact conditions at the layer-foundation interface are then investigated by considering two extreme cases, one with the indented layer in frictionless contact with the half space and the other with the indented layer rigidly adhered to the half space. Graphs of the bounds on the maximum normal stress occurring in indented elastic layers for the cases of rigid cylindrical indenter and rigid half-space foundation are obtained for possible practical applications. Some results of the elastic indenter problem are also presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document